Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.00654
Cited By
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
1 March 2023
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy"
17 / 17 papers shown
Title
DeSIA: Attribute Inference Attacks Against Limited Fixed Aggregate Statistics
Yifeng Mao
Bozhidar Stevanoski
Yves-Alexandre de Montjoye
35
0
0
25 Apr 2025
DP-2Stage: Adapting Language Models as Differentially Private Tabular Data Generators
Tejumade Afonja
Hui-Po Wang
Raouf Kerkouche
Mario Fritz
SyDa
82
2
0
03 Dec 2024
Bounding Training Data Reconstruction in Private (Deep) Learning
Chuan Guo
Brian Karrer
Kamalika Chaudhuri
L. V. D. van der Maaten
73
47
0
28 Jan 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
110
258
0
13 Oct 2021
Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective
J. Zhang
Haochuan Li
S. Sra
Ali Jadbabaie
46
8
0
12 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
96
98
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
121
268
0
25 Sep 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
144
358
0
14 Jul 2021
Deduplicating Training Data Makes Language Models Better
Katherine Lee
Daphne Ippolito
A. Nystrom
Chiyuan Zhang
Douglas Eck
Chris Callison-Burch
Nicholas Carlini
SyDa
219
447
0
14 Jul 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
148
154
0
26 Feb 2021
Permute-and-Flip: A new mechanism for differentially private selection
Ryan McKenna
Daniel Sheldon
82
43
0
23 Oct 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
110
155
0
28 Jul 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
105
384
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
54
276
0
02 Oct 2017
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
708
6,435
0
26 Sep 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
262
2,696
0
15 Sep 2016
Efficient Per-Example Gradient Computations
Ian Goodfellow
124
63
0
07 Oct 2015
1