ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01980
  4. Cited By
Towards energy-efficient Deep Learning: An overview of energy-efficient
  approaches along the Deep Learning Lifecycle

Towards energy-efficient Deep Learning: An overview of energy-efficient approaches along the Deep Learning Lifecycle

5 February 2023
Vanessa Mehlin
Sigurd Schacht
Carsten Lanquillon
    HAI
    MedIm
ArXivPDFHTML

Papers citing "Towards energy-efficient Deep Learning: An overview of energy-efficient approaches along the Deep Learning Lifecycle"

11 / 11 papers shown
Title
Investigation of Energy-efficient AI Model Architectures and Compression
  Techniques for "Green" Fetal Brain Segmentation
Investigation of Energy-efficient AI Model Architectures and Compression Techniques for "Green" Fetal Brain Segmentation
Szymon Mazurek
M. Pytlarz
Sylwia Malec
A. Crimi
19
0
0
03 Apr 2024
ChatGPT in the Age of Generative AI and Large Language Models: A Concise Survey
S. Mohamadi
G. Mujtaba
Ngan Le
Gianfranco Doretto
Don Adjeroh
LM&MA
AI4MH
21
21
0
09 Jul 2023
ChatGPT Needs SPADE (Sustainability, PrivAcy, Digital divide, and Ethics) Evaluation: A Review
ChatGPT Needs SPADE (Sustainability, PrivAcy, Digital divide, and Ethics) Evaluation: A Review
Sunder Ali Khowaja
P. Khuwaja
K. Dev
Weizheng Wang
Lewis Nkenyereye
27
76
0
13 Apr 2023
A Survey on Green Deep Learning
A Survey on Green Deep Learning
Jingjing Xu
Wangchunshu Zhou
Zhiyi Fu
Hao Zhou
Lei Li
VLM
71
83
0
08 Nov 2021
Active learning for reducing labeling effort in text classification
  tasks
Active learning for reducing labeling effort in text classification tasks
Peter Jacobs
Gideon Maillette de Buy Wenniger
M. Wiering
Lambert Schomaker
VLM
35
11
0
10 Sep 2021
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
239
642
0
21 Apr 2021
Pre-trained Models for Natural Language Processing: A Survey
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
241
1,450
0
18 Mar 2020
Understanding and Robustifying Differentiable Architecture Search
Understanding and Robustifying Differentiable Architecture Search
Arber Zela
T. Elsken
Tonmoy Saikia
Yassine Marrakchi
Thomas Brox
Frank Hutter
OOD
AAML
66
366
0
20 Sep 2019
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,549
0
17 Apr 2017
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
201
14,304
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,356
0
25 Aug 2016
1