ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.08485
  4. Cited By
Can Fairness be Automated? Guidelines and Opportunities for
  Fairness-aware AutoML

Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML

15 March 2023
Hilde J. P. Weerts
Florian Pfisterer
Matthias Feurer
Katharina Eggensperger
Eddie Bergman
Noor H. Awad
Joaquin Vanschoren
Mykola Pechenizkiy
B. Bischl
Frank Hutter
    FaML
ArXivPDFHTML

Papers citing "Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML"

13 / 13 papers shown
Title
Operationalizing Machine Learning: An Interview Study
Operationalizing Machine Learning: An Interview Study
Shreya Shankar
Rolando Garcia
J. M. Hellerstein
Aditya G. Parameswaran
51
47
0
16 Sep 2022
Fair and Green Hyperparameter Optimization via Multi-objective and
  Multiple Information Source Bayesian Optimization
Fair and Green Hyperparameter Optimization via Multi-objective and Multiple Information Source Bayesian Optimization
Antonio Candelieri
Andrea Ponti
F. Archetti
12
15
0
18 May 2022
Exploring How Machine Learning Practitioners (Try To) Use Fairness
  Toolkits
Exploring How Machine Learning Practitioners (Try To) Use Fairness Toolkits
Wesley Hanwen Deng
Manish Nagireddy
M. S. Lee
Jatinder Singh
Zhiwei Steven Wu
Kenneth Holstein
Haiyi Zhu
29
85
0
13 May 2022
FairAutoML: Embracing Unfairness Mitigation in AutoML
FairAutoML: Embracing Unfairness Mitigation in AutoML
Qingyun Wu
Chi Wang
FaML
29
5
0
11 Nov 2021
Explaining Hyperparameter Optimization via Partial Dependence Plots
Explaining Hyperparameter Optimization via Partial Dependence Plots
Julia Moosbauer
J. Herbinger
Giuseppe Casalicchio
Marius Lindauer
Bernd Bischl
36
56
0
08 Nov 2021
Whither AutoML? Understanding the Role of Automation in Machine Learning
  Workflows
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
44
71
0
13 Jan 2021
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
81
576
0
13 Mar 2020
Human-AI Collaboration in Data Science: Exploring Data Scientists'
  Perceptions of Automated AI
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
156
312
0
05 Sep 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
189
730
0
13 Dec 2018
Model Evaluation, Model Selection, and Algorithm Selection in Machine
  Learning
Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
S. Raschka
72
749
0
13 Nov 2018
Efficient Multi-objective Neural Architecture Search via Lamarckian
  Evolution
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution
T. Elsken
J. H. Metzen
Frank Hutter
117
498
0
24 Apr 2018
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
1