ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.17078
  4. Cited By
Machine Learning for Partial Differential Equations

Machine Learning for Partial Differential Equations

30 March 2023
Steven L. Brunton
J. Nathan Kutz
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning for Partial Differential Equations"

23 / 23 papers shown
Title
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Hamidreza Eivazi
Jendrik-Alexander Tröger
Stefan H. A. Wittek
Stefan Hartmann
Andreas Rausch
AI4CE
41
0
0
27 Mar 2025
Data-driven identification of latent port-Hamiltonian systems
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
16
2
0
15 Aug 2024
Reducing Spatial Discretization Error on Coarse CFD Simulations Using an
  OpenFOAM-Embedded Deep Learning Framework
Reducing Spatial Discretization Error on Coarse CFD Simulations Using an OpenFOAM-Embedded Deep Learning Framework
Jesus Gonzalez-Sieiro
David Pardo
Vincenzo Nava
V. M. Calo
Markus Towara
AI4CE
17
1
0
13 May 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
33
1
0
09 May 2024
BiLO: Bilevel Local Operator Learning for PDE inverse problems
BiLO: Bilevel Local Operator Learning for PDE inverse problems
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
63
1
0
27 Apr 2024
Nonlinear model reduction for operator learning
Nonlinear model reduction for operator learning
Hamidreza Eivazi
Stefan H. A. Wittek
Andreas Rausch
19
3
0
27 Mar 2024
JAX-SPH: A Differentiable Smoothed Particle Hydrodynamics Framework
JAX-SPH: A Differentiable Smoothed Particle Hydrodynamics Framework
Artur P. Toshev
Harish D. Ramachandran
Jonas A. Erbesdobler
Gianluca Galletti
Johannes Brandstetter
Nikolaus A. Adams
44
7
0
07 Mar 2024
Operator Learning: Algorithms and Analysis
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
36
22
0
24 Feb 2024
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
Artur P. Toshev
Jonas A. Erbesdobler
Nikolaus A. Adams
Johannes Brandstetter
AI4CE
38
4
0
09 Feb 2024
Speeding up and reducing memory usage for scientific machine learning
  via mixed precision
Speeding up and reducing memory usage for scientific machine learning via mixed precision
Joel Hayford
Jacob Goldman-Wetzler
Eric Wang
Lu Lu
36
3
0
30 Jan 2024
Weak-Form Latent Space Dynamics Identification
Weak-Form Latent Space Dynamics Identification
April Tran
Xiaolong He
Daniel Messenger
Youngsoo Choi
David M. Bortz
29
7
0
20 Nov 2023
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers
Phillip Lippe
Bastiaan S. Veeling
P. Perdikaris
Richard E. Turner
Johannes Brandstetter
DiffM
AI4CE
28
76
0
10 Aug 2023
CS4ML: A general framework for active learning with arbitrary data based
  on Christoffel functions
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
16
6
0
01 Jun 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
11
10
0
27 Apr 2023
A Novel Sparse Regularizer
A Novel Sparse Regularizer
Hovig Bayandorian
20
0
0
18 Jan 2023
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
79
0
08 Sep 2022
Enhancing Computational Fluid Dynamics with Machine Learning
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
98
351
0
05 Oct 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,254
0
18 Oct 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
89
127
0
11 Mar 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Data-Driven Discovery of Coarse-Grained Equations
Data-Driven Discovery of Coarse-Grained Equations
Joseph Bakarji
D. Tartakovsky
16
32
0
30 Jan 2020
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
177
83
0
12 Sep 2019
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
1