ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.08466
  4. Cited By
Synthetic Data from Diffusion Models Improves ImageNet Classification

Synthetic Data from Diffusion Models Improves ImageNet Classification

17 April 2023
Shekoofeh Azizi
Simon Kornblith
Chitwan Saharia
Mohammad Norouzi
David J. Fleet
    VLM
    DiffM
ArXivPDFHTML

Papers citing "Synthetic Data from Diffusion Models Improves ImageNet Classification"

50 / 228 papers shown
Title
Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation
Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation
Guan Gui
Bin-Bin Gao
J. Liu
Chengjie Wang
Y. Wu
DiffM
16
0
0
14 May 2025
Addressing degeneracies in latent interpolation for diffusion models
Addressing degeneracies in latent interpolation for diffusion models
Erik Landolsi
Fredrik Kahl
DiffM
35
0
0
12 May 2025
Unsupervised Learning for Class Distribution Mismatch
Unsupervised Learning for Class Distribution Mismatch
Pan Du
Wangbo Zhao
Xinai Lu
Nian Liu
Z. Li
...
Suyun Zhao
H. Chen
Cuiping Li
Kai Wang
Yang You
21
0
0
11 May 2025
Computationally Efficient Diffusion Models in Medical Imaging: A Comprehensive Review
Computationally Efficient Diffusion Models in Medical Imaging: A Comprehensive Review
Abdullah
Tao Huang
Ickjai Lee
E. Ahn
MedIm
16
0
0
09 May 2025
Masked Language Prompting for Generative Data Augmentation in Few-shot Fashion Style Recognition
Masked Language Prompting for Generative Data Augmentation in Few-shot Fashion Style Recognition
Yuki Hirakawa
Ryotaro Shimizu
41
0
0
28 Apr 2025
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Yinqi Li
Hong Chang
Ruibing Hou
Shiguang Shan
Xilin Chen
DiffM
50
0
0
24 Apr 2025
Scene-Aware Location Modeling for Data Augmentation in Automotive Object Detection
Scene-Aware Location Modeling for Data Augmentation in Automotive Object Detection
Jens Petersen
Davide Abati
A. Habibian
Auke Wiggers
ViT
3DPC
48
0
0
23 Apr 2025
Cut-and-Splat: Leveraging Gaussian Splatting for Synthetic Data Generation
Cut-and-Splat: Leveraging Gaussian Splatting for Synthetic Data Generation
Bram Vanherle
Brent Zoomers
Jeroen Put
F. Reeth
Nick Michiels
3DGS
32
0
0
11 Apr 2025
IGG: Image Generation Informed by Geodesic Dynamics in Deformation Spaces
IGG: Image Generation Informed by Geodesic Dynamics in Deformation Spaces
Nian Wu
Nivetha Jayakumar
Jiarui Xing
Miaomiao Zhang
26
0
0
09 Apr 2025
D-Feat Occlusions: Diffusion Features for Robustness to Partial Visual Occlusions in Object Recognition
D-Feat Occlusions: Diffusion Features for Robustness to Partial Visual Occlusions in Object Recognition
Rupayan Mallick
Sibo Dong
Nataniel Ruiz
Sarah Adel Bargal
DiffM
44
0
0
08 Apr 2025
Diffusion models applied to skin and oral cancer classification
Diffusion models applied to skin and oral cancer classification
José J. M. Uliana
Renato A. Krohling
DiffM
MedIm
52
0
0
28 Mar 2025
Concept-Aware LoRA for Domain-Aligned Segmentation Dataset Generation
Concept-Aware LoRA for Domain-Aligned Segmentation Dataset Generation
Minho Park
S. Park
Jungsoo Lee
Hyojin Park
Kyuwoong Hwang
Fatih Porikli
Jaegul Choo
Sungha Choi
34
0
0
28 Mar 2025
TULIP: Towards Unified Language-Image Pretraining
TULIP: Towards Unified Language-Image Pretraining
Zineng Tang
Long Lian
Seun Eisape
Xudong Wang
Roei Herzig
Adam Yala
Alane Suhr
Trevor Darrell
David M. Chan
VLM
CLIP
MLLM
95
3
0
19 Mar 2025
Do Vision Models Develop Human-Like Progressive Difficulty Understanding?
Do Vision Models Develop Human-Like Progressive Difficulty Understanding?
Zeyi Huang
Utkarsh Ojha
Yuyang Ji
Donghyun Lee
Yong Jae Lee
OOD
VLM
Presented at ResearchTrend Connect | VLM on 07 May 2025
96
0
1
17 Mar 2025
Diffusion on Graph: Augmentation of Graph Structure for Node Classification
Diffusion on Graph: Augmentation of Graph Structure for Node Classification
Yancheng Wang
Changyu Liu
Yingzhen Yang
DiffM
GNN
71
0
0
16 Mar 2025
AugGen: Synthetic Augmentation Can Improve Discriminative Models
Parsa Rahimi
Damien Teney
S´ebastien Marcel
64
0
0
14 Mar 2025
Active Learning Inspired ControlNet Guidance for Augmenting Semantic Segmentation Datasets
H. Kniesel
Pedro Hermosilla
Timo Ropinski
60
0
0
12 Mar 2025
Context-guided Responsible Data Augmentation with Diffusion Models
Khawar Islam
Naveed Akhtar
46
1
0
12 Mar 2025
Synthetic Data is an Elegant GIFT for Continual Vision-Language Models
Bin Wu
Wuxuan Shi
Jinqiao Wang
Mang Ye
CLL
VLM
45
0
0
06 Mar 2025
SpinML: Customized Synthetic Data Generation for Private Training of Specialized ML Models
SpinML: Customized Synthetic Data Generation for Private Training of Specialized ML Models
Jiang Zhang
Rohan Sequeira
Konstantinos Psounis
SyDa
73
0
0
05 Mar 2025
GenColor: Generative Color-Concept Association in Visual Design
Yihan Hou
Xingchen Zeng
Yusong Wang
Manling Yang
Xiaojiao Chen
Wei Zeng
DiffM
76
0
0
05 Mar 2025
Enhancing Vision-Language Compositional Understanding with Multimodal Synthetic Data
Enhancing Vision-Language Compositional Understanding with Multimodal Synthetic Data
Haoxin Li
Boyang Li
CoGe
69
0
0
03 Mar 2025
Spend Wisely: Maximizing Post-Training Gains in Iterative Synthetic Data Boostrapping
Spend Wisely: Maximizing Post-Training Gains in Iterative Synthetic Data Boostrapping
Pu Yang
Yunzhen Feng
Ziyuan Chen
Yuhang Wu
Zhuoyuan Li
DiffM
101
0
0
31 Jan 2025
Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models
Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models
Ran Xu
Hejie Cui
Yue Yu
Xuan Kan
Wenqi Shi
Yuchen Zhuang
Wei Jin
Joyce C. Ho
Carl Yang
64
12
0
28 Jan 2025
DreamMask: Boosting Open-vocabulary Panoptic Segmentation with Synthetic Data
Yuanpeng Tu
Xi Chen
Ser-Nam Lim
Hengshuang Zhao
33
0
0
03 Jan 2025
The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Performs Better
The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Performs Better
Scott Geng
Cheng-Yu Hsieh
Vivek Ramanujan
Matthew Wallingford
Chun-Liang Li
Pang Wei Koh
Ranjay Krishna
DiffM
60
6
0
03 Jan 2025
Dataset Augmentation by Mixing Visual Concepts
Dataset Augmentation by Mixing Visual Concepts
Abdullah Al Rahat
Hemanth Venkateswara
DiffM
68
0
0
19 Dec 2024
Financial Fine-tuning a Large Time Series Model
Financial Fine-tuning a Large Time Series Model
Xinghong Fu
Masanori Hirano
Kentaro Imajo
AI4TS
AIFin
77
0
0
13 Dec 2024
GenMix: Effective Data Augmentation with Generative Diffusion Model
  Image Editing
GenMix: Effective Data Augmentation with Generative Diffusion Model Image Editing
Khawar Islam
M. Zaheer
Arif Mahmood
Karthik Nandakumar
Naveed Akhtar
DiffM
75
2
0
03 Dec 2024
Gen-SIS: Generative Self-augmentation Improves Self-supervised Learning
Gen-SIS: Generative Self-augmentation Improves Self-supervised Learning
Varun Belagali
Srikar Yellapragada
Alexandros Graikos
S. Kapse
Zilinghan Li
Tarak Nandi
Ravi K. Madduri
Prateek Prasanna
Joel H. Saltz
Dimitris Samaras
DiffM
73
1
0
02 Dec 2024
TextSSR: Diffusion-based Data Synthesis for Scene Text Recognition
TextSSR: Diffusion-based Data Synthesis for Scene Text Recognition
Xingsong Ye
Yongkun Du
Yunbo Tao
Z. Chen
DiffM
96
0
0
02 Dec 2024
Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Zilin Du
Haoxin Li
Jianfei Yu
Boyang Li
111
0
0
01 Dec 2024
Training Data Synthesis with Difficulty Controlled Diffusion Model
Training Data Synthesis with Difficulty Controlled Diffusion Model
Zerun Wang
Jiafeng Mao
Xueting Wang
Toshihiko Yamasaki
DiffM
75
0
0
27 Nov 2024
GenDeg: Diffusion-based Degradation Synthesis for Generalizable All-In-One Image Restoration
GenDeg: Diffusion-based Degradation Synthesis for Generalizable All-In-One Image Restoration
Sudarshan Rajagopalan
Nithin Gopalakrishnan Nair
Jay N. Paranjape
Vishal M. Patel
DiffM
90
0
0
26 Nov 2024
SynDiff-AD: Improving Semantic Segmentation and End-to-End Autonomous
  Driving with Synthetic Data from Latent Diffusion Models
SynDiff-AD: Improving Semantic Segmentation and End-to-End Autonomous Driving with Synthetic Data from Latent Diffusion Models
Harsh Goel
Sai Shankar Narasimhan
Oguzhan Akcin
Sandeep P. Chinchali
DiffM
84
2
0
25 Nov 2024
CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
CIA: Controllable Image Augmentation Framework Based on Stable Diffusion
Mohamed Benkedadra
Dany Rimez
Tiffanie Godelaine
Natarajan Chidambaram
Hamed Razavi Khosroshahi
Horacio Tellez
Matei Mancas
Benoît Macq
Sidi Ahmed Mahmoudi
DiffM
69
0
0
25 Nov 2024
TPIE: Topology-Preserved Image Editing With Text Instructions
TPIE: Topology-Preserved Image Editing With Text Instructions
Nivetha Jayakumar
Srivardhan Reddy Gadila
Tonmoy Hossain
Yangfeng Ji
Miaomiao Zhang
DiffM
MedIm
74
0
0
22 Nov 2024
D-Cube: Exploiting Hyper-Features of Diffusion Model for Robust Medical Classification
Minhee Jang
Juheon Son
Thanaporn Viriyasaranon
Junho Kim
Jang-Hwan Choi
MedIm
29
0
0
17 Nov 2024
Local Lesion Generation is Effective for Capsule Endoscopy Image Data
  Augmentation in a Limited Data Setting
Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting
Adrian B. Chłopowiec
Adam R. Chłopowiec
Krzysztof Galus
Wojciech Cebula
Martin Tabakov
MedIm
33
0
0
05 Nov 2024
Exploring the Landscape for Generative Sequence Models for Specialized
  Data Synthesis
Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis
Mohammad Zbeeb
Mohammad Ghorayeb
Mariam Salman
21
0
0
04 Nov 2024
Volumetric Conditioning Module to Control Pretrained Diffusion Models
  for 3D Medical Images
Volumetric Conditioning Module to Control Pretrained Diffusion Models for 3D Medical Images
Suhyun Ahn
Wonjung Park
Jihoon Cho
Seunghyuck Park
Jinah Park
MedIm
26
0
0
29 Oct 2024
Decoupled Data Augmentation for Improving Image Classification
Decoupled Data Augmentation for Improving Image Classification
Ruoxin Chen
Zhe Wang
Ke-Yue Zhang
Shuang Wu
Jiamu Sun
Shouli Wang
Taiping Yao
Shouhong Ding
DiffM
32
2
0
29 Oct 2024
DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe
  Dataset Curation
DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation
Yuang Ai
Xiaoqiang Zhou
Huaibo Huang
Xiaotian Han
Zhengyu Chen
Quanzeng You
Hongxia Yang
42
8
0
24 Oct 2024
Diffusion Curriculum: Synthetic-to-Real Generative Curriculum Learning
  via Image-Guided Diffusion
Diffusion Curriculum: Synthetic-to-Real Generative Curriculum Learning via Image-Guided Diffusion
Yijun Liang
Shweta Bhardwaj
Tianyi Zhou
26
0
0
17 Oct 2024
Can Medical Vision-Language Pre-training Succeed with Purely Synthetic Data?
Can Medical Vision-Language Pre-training Succeed with Purely Synthetic Data?
Che Liu
Zhongwei Wan
Haozhe Wang
Yinda Chen
T. Qaiser
Chen Jin
Fariba Yousefi
Nikolay Burlutskiy
Rossella Arcucci
VLM
SyDa
LM&MA
MedIm
53
2
0
17 Oct 2024
Will the Inclusion of Generated Data Amplify Bias Across Generations in
  Future Image Classification Models?
Will the Inclusion of Generated Data Amplify Bias Across Generations in Future Image Classification Models?
Zeliang Zhang
Xin Liang
Mingqian Feng
Susan Liang
Chenliang Xu
34
1
0
14 Oct 2024
SynFER: Towards Boosting Facial Expression Recognition with Synthetic
  Data
SynFER: Towards Boosting Facial Expression Recognition with Synthetic Data
Xilin He
Cheng Luo
Xiaole Xian
Bing Li
Siyang Song
Muhammad Haris Khan
Weicheng Xie
L. Shen
Zongyuan Ge
30
4
0
13 Oct 2024
FedBiP: Heterogeneous One-Shot Federated Learning with Personalized Latent Diffusion Models
FedBiP: Heterogeneous One-Shot Federated Learning with Personalized Latent Diffusion Models
Haokun Chen
Hang Li
Yao Zhang
Gengyuan Zhang
Jinhe Bi
Philip H. S. Torr
Philip Torr
Denis Krompass
Denis Krompass
Volker Tresp
22
2
0
07 Oct 2024
Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
Salma Abdel Magid
Weiwei Pan
Simon Warchol
Grace Guo
Junsik Kim
Mahia Rahman
Hanspeter Pfister
84
0
0
06 Oct 2024
SAFLEX: Self-Adaptive Augmentation via Feature Label Extrapolation
SAFLEX: Self-Adaptive Augmentation via Feature Label Extrapolation
Mucong Ding
Bang An
Yuancheng Xu
Anirudh Satheesh
Furong Huang
19
1
0
03 Oct 2024
12345
Next