ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.02474
  4. Cited By
MLHOps: Machine Learning for Healthcare Operations

MLHOps: Machine Learning for Healthcare Operations

4 May 2023
Kristoffer Larsen
Vallijah Subasri
A. Krishnan
Cláudio Tinoco Mesquita
Diana Paez
Laleh Seyyed-Kalantari
Amalia Peix
    LM&MA
    AI4TS
    VLM
ArXivPDFHTML

Papers citing "MLHOps: Machine Learning for Healthcare Operations"

13 / 13 papers shown
Title
CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in
  Medical Imaging AI
CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in Medical Imaging AI
Arjun Soin
J. Merkow
Jin Long
Joseph Paul Cohen
Smitha Saligrama
Stephen Kaiser
Steven Borg
I. Tarapov
M. Lungren
OOD
45
15
0
06 Feb 2022
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
117
354
0
04 Oct 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
96
195
0
12 Jul 2021
MLDemon: Deployment Monitoring for Machine Learning Systems
MLDemon: Deployment Monitoring for Machine Learning Systems
Antonio A. Ginart
Martin Jinye Zhang
James Y. Zou
37
18
0
28 Apr 2021
CaPC Learning: Confidential and Private Collaborative Learning
CaPC Learning: Confidential and Private Collaborative Learning
Christopher A. Choquette-Choo
Natalie Dullerud
Adam Dziedzic
Yunxiang Zhang
S. Jha
Nicolas Papernot
Xiao Wang
FedML
59
57
0
09 Feb 2021
Secure and Robust Machine Learning for Healthcare: A Survey
Secure and Robust Machine Learning for Healthcare: A Survey
A. Qayyum
Junaid Qadir
Muhammad Bilal
Ala I. Al-Fuqaha
AAML
OOD
31
371
0
21 Jan 2020
Mixout: Effective Regularization to Finetune Large-scale Pretrained
  Language Models
Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
MoE
235
205
0
25 Sep 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,082
0
24 Oct 2016
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
65
389
0
20 Oct 2016
Recurrent Neural Networks for Multivariate Time Series with Missing
  Values
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
205
1,892
0
06 Jun 2016
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
160
25,214
0
09 Jun 2011
1