Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.04933
Cited By
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
7 May 2023
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial"
19 / 19 papers shown
Title
Improving Medical Diagnostics with Vision-Language Models: Convex Hull-Based Uncertainty Analysis
Ferhat Ozgur Catak
Murat Kuzlu
Taylor Patrick
81
0
0
24 Nov 2024
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Burkner
BDL
88
1
0
24 Nov 2024
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
52
1
0
30 Oct 2024
Uncertainty Quantification in Large Language Models Through Convex Hull Analysis
Ferhat Ozgur Catak
Murat Kuzlu
UQCV
36
4
0
28 Jun 2024
Towards a Probabilistic Fusion Approach for Robust Battery Prognostics
Jokin Alcibar
J. Aizpurua
E. Zugasti
25
1
0
24 May 2024
Towards Out-of-Distribution Detection for breast cancer classification in Point-of-Care Ultrasound Imaging
Jennie Karlsson
Marisa Wodrich
Niels Christian Overgaard
Freja Sahlin
Kristina Laang
Anders Heyden
Ida Arvidsson
16
0
0
29 Feb 2024
A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks
Graham Pash
M. Hassanaly
S. Yellapantula
AI4CE
24
0
0
28 Feb 2024
Probabilistic Neural Networks (PNNs) for Modeling Aleatoric Uncertainty in Scientific Machine Learning
Farhad Pourkamali-Anaraki
Jamal F. Husseini
Scott E. Stapleton
UD
25
2
0
21 Feb 2024
Uncertainty Quantification on Clinical Trial Outcome Prediction
Tianyi Chen
Yingzhou Lu
Nan Hao
Capucine Van Rechem
Jintai Chen
Tianfan Fu
11
21
0
07 Jan 2024
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
12
3
0
26 Jul 2023
Perturbation-Assisted Sample Synthesis: A Novel Approach for Uncertainty Quantification
Yifei Liu
Rex Shen
Xiaotong Shen
DiffM
16
1
0
30 May 2023
Machine learning pipeline for battery state of health estimation
D. Roman
Saurabh Saxena
Valentin Robu
Michael G. Pecht
David Flynn
18
374
0
01 Feb 2021
An adaptive artificial neural network-based generative design method for layout designs
Chaojun Qian
Renkai Tan
W. Ye
AI4CE
10
26
0
29 Jan 2021
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
50
68
0
09 Feb 2020
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
143
1,599
0
02 Feb 2020
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
53
114
0
08 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic
Loic Le Gratiet
AI4CE
86
290
0
02 Oct 2012
1