Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.12118
Cited By
Annealing Self-Distillation Rectification Improves Adversarial Training
20 May 2023
Yuehua Wu
Hung-Jui Wang
Shang-Tse Chen
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Annealing Self-Distillation Rectification Improves Adversarial Training"
10 / 10 papers shown
Title
New Paradigm of Adversarial Training: Breaking Inherent Trade-Off between Accuracy and Robustness via Dummy Classes
Y. Wang
Li Liu
Zi Liang
Qingqing Ye
Haibo Hu
AAML
18
0
0
16 Oct 2024
Adversarial Robustness Overestimation and Instability in TRADES
Jonathan Weiping Li
Ren-Wei Liang
Cheng-Han Yeh
Cheng-Chang Tsai
Kuanchun Yu
Chun-Shien Lu
Shang-Tse Chen
AAML
38
0
0
10 Oct 2024
Revisiting Semi-supervised Adversarial Robustness via Noise-aware Online Robust Distillation
Tsung-Han Wu
Hung-Ting Su
Shang-Tse Chen
Winston H. Hsu
18
1
0
19 Sep 2024
Efficient and Effective Augmentation Strategy for Adversarial Training
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
60
58
0
27 Oct 2022
Alleviating Robust Overfitting of Adversarial Training With Consistency Regularization
Shudong Zhang
Haichang Gao
Tianwei Zhang
Yunyi Zhou
Zihui Wu
AAML
18
3
0
24 May 2022
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
48
18
0
07 Oct 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
300
5,761
0
29 Apr 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
217
674
0
19 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,108
0
04 Nov 2016
1