Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.16905
Cited By
Improving Neural Additive Models with Bayesian Principles
26 May 2023
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Neural Additive Models with Bayesian Principles"
6 / 6 papers shown
Title
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
31
12
0
09 Oct 2023
Probing as Quantifying Inductive Bias
Alexander Immer
Lucas Torroba Hennigen
Vincent Fortuin
Ryan Cotterell
29
14
0
15 Oct 2021
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
264
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
MCMC using Hamiltonian dynamics
Radford M. Neal
130
3,260
0
09 Jun 2012
1