ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19148
  4. Cited By
Mitigating Label Biases for In-context Learning

Mitigating Label Biases for In-context Learning

28 May 2023
Yu Fei
Yifan Hou
Zeming Chen
Antoine Bosselut
ArXivPDFHTML

Papers citing "Mitigating Label Biases for In-context Learning"

18 / 18 papers shown
Title
Aligning Black-box Language Models with Human Judgments
Aligning Black-box Language Models with Human Judgments
Gerrit J. J. van den Burg
Gen Suzuki
Wei Liu
Murat Sensoy
ALM
71
0
0
07 Feb 2025
PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection
PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection
Sepideh Mamooler
Syrielle Montariol
Alexander Mathis
Antoine Bosselut
83
1
0
16 Dec 2024
On Calibration of LLM-based Guard Models for Reliable Content Moderation
On Calibration of LLM-based Guard Models for Reliable Content Moderation
Hongfu Liu
Hengguan Huang
Hao Wang
Xiangming Gu
Ye Wang
53
2
0
14 Oct 2024
Token-based Decision Criteria Are Suboptimal in In-context Learning
Token-based Decision Criteria Are Suboptimal in In-context Learning
Hakaze Cho
Yoshihiro Sakai
Mariko Kato
Kenshiro Tanaka
Akira Ishii
Naoya Inoue
40
2
0
24 Jun 2024
Unveiling Selection Biases: Exploring Order and Token Sensitivity in
  Large Language Models
Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models
Sheng-Lun Wei
Cheng-Kuang Wu
Hen-Hsen Huang
Hsin-Hsi Chen
34
10
0
05 Jun 2024
Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias
  in Factual Knowledge Extraction
Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction
Ziyang Xu
Keqin Peng
Liang Ding
Dacheng Tao
Xiliang Lu
32
10
0
15 Mar 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
56
17
0
28 Feb 2024
$Se^2$: Sequential Example Selection for In-Context Learning
Se2Se^2Se2: Sequential Example Selection for In-Context Learning
Haoyu Liu
Jianfeng Liu
Shaohan Huang
Yuefeng Zhan
Hao Sun
Weiwei Deng
Furu Wei
Qi Zhang
25
3
0
21 Feb 2024
NoisyICL: A Little Noise in Model Parameters Calibrates In-context
  Learning
NoisyICL: A Little Noise in Model Parameters Calibrates In-context Learning
Yufeng Zhao
Yoshihiro Sakai
Naoya Inoue
31
3
0
08 Feb 2024
Positional Information Matters for Invariant In-Context Learning: A Case
  Study of Simple Function Classes
Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes
Yongqiang Chen
Binghui Xie
Kaiwen Zhou
Bo Han
Yatao Bian
James Cheng
27
2
0
30 Nov 2023
Multi-label and Multi-target Sampling of Machine Annotation for
  Computational Stance Detection
Multi-label and Multi-target Sampling of Machine Annotation for Computational Stance Detection
Zhengyuan Liu
Hai Leong Chieu
Nancy F. Chen
21
1
0
08 Nov 2023
Primacy Effect of ChatGPT
Primacy Effect of ChatGPT
Yiwei Wang
Yujun Cai
Muhao Chen
Yuxuan Liang
Bryan Hooi
ALM
AI4MH
LRM
22
13
0
20 Oct 2023
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
306
11,909
0
04 Mar 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,448
0
28 Jan 2022
Fantastically Ordered Prompts and Where to Find Them: Overcoming
  Few-Shot Prompt Order Sensitivity
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
277
1,117
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,312
0
17 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,916
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
258
1,586
0
21 Jan 2020
1