Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.02235
Cited By
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
4 June 2023
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Linear Causal Representations from Interventions under General Nonlinear Mixing"
48 / 48 papers shown
Title
Contextures: Representations from Contexts
Runtian Zhai
Kai Yang
Che-Ping Tsai
Burak Varici
Zico Kolter
Pradeep Ravikumar
74
0
0
02 May 2025
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
96
3
0
19 Mar 2025
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
Yuhang Liu
Dong Gong
Erdun Gao
Zhen Zhang
Biwei Huang
Mingming Gong
Anton van den Hengel
Javen Qinfeng Shi
J. Shi
110
0
0
12 Mar 2025
Feature Matching Intervention: Leveraging Observational Data for Causal Representation Learning
Haoze Li
Jun Xie
CML
56
0
0
05 Mar 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
50
0
0
27 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
64
3
0
04 Feb 2025
What is causal about causal models and representations?
Frederik Hytting Jørgensen
Luigi Gresele
S. Weichwald
CML
101
0
0
31 Jan 2025
Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
Minghao Fu
Biwei Huang
Zijian Li
Yujia Zheng
Ignavier Ng
Yingyao Hu
Kun Zhang
CML
40
0
0
21 Jan 2025
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
43
1
0
31 Oct 2024
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
John Gkountouras
Matthias Lindemann
Phillip Lippe
E. Gavves
Ivan Titov
LRM
23
0
0
25 Oct 2024
Automated Discovery of Pairwise Interactions from Unstructured Data
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton A. Earnshaw
Jason S. Hartford
18
2
0
11 Sep 2024
Linear causal disentanglement via higher-order cumulants
Paula Leyes Carreno
Chiara Meroni
A. Seigal
CML
26
0
0
05 Jul 2024
ExDAG: Exact learning of DAGs
Pavel Rytír
Ales Wodecki
Jakub Marecek
CML
36
1
0
21 Jun 2024
Linear Causal Representation Learning from Unknown Multi-node Interventions
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
22
1
0
09 Jun 2024
Smoke and Mirrors in Causal Downstream Tasks
Riccardo Cadei
Lukas Lindorfer
Sylvia Cremer
Cordelia Schmid
Francesco Locatello
CML
23
3
0
27 May 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Zeen Song
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Wenwen Qiang
CML
BDL
VLM
30
0
0
24 May 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
35
6
0
22 May 2024
Propensity Score Alignment of Unpaired Multimodal Data
Johnny Xi
Jason S. Hartford
19
2
0
02 Apr 2024
Identifiable Latent Neural Causal Models
Yuhang Liu
Zhen Zhang
Dong Gong
Mingming Gong
Biwei Huang
A. Hengel
Kun Zhang
Javen Qinfeng Shi
CML
OOD
27
7
0
23 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
27
13
0
13 Mar 2024
On the Origins of Linear Representations in Large Language Models
Yibo Jiang
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
Victor Veitch
59
24
0
06 Mar 2024
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
Emanuele Marconato
Samuele Bortolotti
Emile van Krieken
Antonio Vergari
Andrea Passerini
Stefano Teso
33
18
0
19 Feb 2024
Implicit Causal Representation Learning via Switchable Mechanisms
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
CML
42
0
0
16 Feb 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
83
21
0
14 Feb 2024
Causal Representation Learning from Multiple Distributions: A General Setting
Kun Zhang
Shaoan Xie
Ignavier Ng
Yujia Zheng
CML
OOD
18
18
0
07 Feb 2024
Toward the Identifiability of Comparative Deep Generative Models
Romain Lopez
Jan-Christian Huetter
Ehsan Hajiramezanali
Jonathan Pritchard
Aviv Regev
18
2
0
29 Jan 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
36
3
0
06 Dec 2023
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
32
8
0
29 Nov 2023
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
32
30
0
07 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
8
5
0
05 Nov 2023
Object-centric architectures enable efficient causal representation learning
Amin Mansouri
Jason S. Hartford
Yan Zhang
Yoshua Bengio
CML
OCL
OOD
16
15
0
29 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
15
9
0
24 Oct 2023
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Yuhang Liu
Zhen Zhang
Dong Gong
Mingming Gong
Biwei Huang
A. Hengel
Kun Zhang
Javen Qinfeng Shi
15
13
0
24 Oct 2023
General Identifiability and Achievability for Causal Representation Learning
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
24
16
0
24 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
31
7
0
17 Oct 2023
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
24
4
0
11 Oct 2023
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CML
OOD
11
14
0
06 Oct 2023
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
Kartik Ahuja
Amin Mansouri
Yixin Wang
CML
OOD
10
10
0
04 Oct 2023
Identifiability Guarantees for Causal Disentanglement from Soft Interventions
Jiaqi Zhang
C. Squires
Kristjan Greenewald
Akash Srivastava
Karthikeyan Shanmugam
Caroline Uhler
CML
43
53
0
12 Jul 2023
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
29
25
0
05 Jul 2023
Identification of Nonlinear Latent Hierarchical Models
Lingjing Kong
Biwei Huang
Feng Xie
Eric P. Xing
Yuejie Chi
Kun Zhang
CML
19
19
0
13 Jun 2023
Learning nonparametric latent causal graphs with unknown interventions
Yibo Jiang
Bryon Aragam
CML
16
24
0
05 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
16
56
0
01 Jun 2023
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
24
36
0
26 May 2023
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Sébastien Bubeck
Varun Chandrasekaran
Ronen Eldan
J. Gehrke
Eric Horvitz
...
Scott M. Lundberg
Harsha Nori
Hamid Palangi
Marco Tulio Ribeiro
Yi Zhang
ELM
AI4MH
AI4CE
ALM
239
2,232
0
22 Mar 2023
Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang
David M. Blei
John P. Cunningham
CML
DRL
75
70
0
02 Jan 2023
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
48
78
0
16 Sep 2022
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
207
0
17 Feb 2021
1