ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.02564
  4. Cited By
Spatial Implicit Neural Representations for Global-Scale Species Mapping

Spatial Implicit Neural Representations for Global-Scale Species Mapping

5 June 2023
Elijah Cole
Grant Van Horn
Christian Lange
Alexander Shepard
Patrick R. Leary
Pietro Perona
S. Loarie
Oisin Mac Aodha
ArXivPDFHTML

Papers citing "Spatial Implicit Neural Representations for Global-Scale Species Mapping"

7 / 7 papers shown
Title
Climplicit: Climatic Implicit Embeddings for Global Ecological Tasks
Climplicit: Climatic Implicit Embeddings for Global Ecological Tasks
Johannes Dollinger
Damien Robert
Elena Plekhanova
Lukas Drees
Jan Dirk Wegner
AI4CE
32
0
0
07 Apr 2025
Heterogeneous graph neural networks for species distribution modeling
Heterogeneous graph neural networks for species distribution modeling
Lauren Harrell
Christine Kaeser-Chen
Burcu Karagol Ayan
Keith Anderson
Michelangelo Conserva
Elise Kleeman
Maxim Neumann
Matt Overlan
Melissa Chapman
Drew Purves
49
0
0
14 Mar 2025
RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings
RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings
A. Dhakal
S. Sastry
Subash Khanal
Adeel Ahmad
Eric Xing
Nathan Jacobs
48
0
0
27 Feb 2025
TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning
TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning
Nemin Wu
Qian Cao
Zhangyu Wang
Zeping Liu
Yanlin Qi
...
Stefano Ermon
T. Ganu
A. Nambi
Ni Lao
Gengchen Mai
61
15
0
21 Jun 2024
Bird Distribution Modelling using Remote Sensing and Citizen Science
  data
Bird Distribution Modelling using Remote Sensing and Citizen Science data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hugo Larochelle
David Rolnick
61
8
0
01 May 2023
A Generalizable and Accessible Approach to Machine Learning with Global
  Satellite Imagery
A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery
Esther Rolf
J. Proctor
T. Carleton
I. Bolliger
Vaishaal Shankar
Miyabi Ishihara
Benjamin Recht
S. Hsiang
80
120
0
16 Oct 2020
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
201
14,304
0
07 Oct 2016
1