ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.05415
  4. Cited By
Causal normalizing flows: from theory to practice

Causal normalizing flows: from theory to practice

8 June 2023
Adrián Javaloy
Pablo Sánchez-Martín
Isabel Valera
    TPM
    CML
    AI4CE
ArXivPDFHTML

Papers citing "Causal normalizing flows: from theory to practice"

19 / 19 papers shown
Title
A Causal Framework to Measure and Mitigate Non-binary Treatment Discrimination
A Causal Framework to Measure and Mitigate Non-binary Treatment Discrimination
A. Majumdar
Deborah D. Kanubala
Kavya Gupta
Isabel Valera
FaML
54
0
0
28 Mar 2025
Interpretable Neural Causal Models with TRAM-DAGs
Interpretable Neural Causal Models with TRAM-DAGs
Beate Sick
Oliver Durr
CML
48
1
0
20 Mar 2025
DeCaFlow: A Deconfounding Causal Generative Model
DeCaFlow: A Deconfounding Causal Generative Model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
39
0
0
19 Mar 2025
ACTIVA: Amortized Causal Effect Estimation without Graphs via Transformer-based Variational Autoencoder
Andreas Sauter
Saber Salehkaleybar
Aske Plaat
Erman Acar
CML
48
0
0
03 Mar 2025
CausalMan: A physics-based simulator for large-scale causality
CausalMan: A physics-based simulator for large-scale causality
Nicholas Tagliapietra
J. Luettin
Lavdim Halilaj
Moritz Willig
Tim Pychynski
Kristian Kersting
CML
57
0
0
18 Feb 2025
Marginal Causal Flows for Validation and Inference
Marginal Causal Flows for Validation and Inference
Daniel de Vassimon Manela
Laura Battaglia
Robin J. Evans
CML
34
1
0
02 Nov 2024
Causal Order Discovery based on Monotonic SCMs
Causal Order Discovery based on Monotonic SCMs
Ali Izadi
Martin Ester
31
0
0
24 Oct 2024
Zero-Shot Learning of Causal Models
Zero-Shot Learning of Causal Models
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
42
1
0
08 Oct 2024
$χ$SPN: Characteristic Interventional Sum-Product Networks for Causal
  Inference in Hybrid Domains
χχχSPN: Characteristic Interventional Sum-Product Networks for Causal Inference in Hybrid Domains
Harsh Poonia
Moritz Willig
Zhongjie Yu
Matej Zečević
Kristian Kersting
Devendra Singh Dhami
TPM
CML
23
2
0
14 Aug 2024
Learning Structural Causal Models through Deep Generative Models:
  Methods, Guarantees, and Challenges
Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and Challenges
Audrey Poinsot
Alessandro Leite
Nicolas Chesneau
Michèle Sébag
Marc Schoenauer
54
3
0
08 May 2024
Out-of-Distribution Adaptation in Offline RL: Counterfactual Reasoning
  via Causal Normalizing Flows
Out-of-Distribution Adaptation in Offline RL: Counterfactual Reasoning via Causal Normalizing Flows
Minjae Cho
Jonathan P. How
Chuangchuang Sun
OODD
OffRL
40
1
0
06 May 2024
FiP: a Fixed-Point Approach for Causal Generative Modeling
FiP: a Fixed-Point Approach for Causal Generative Modeling
M. Scetbon
Joel Jennings
Agrin Hilmkil
Cheng Zhang
Chao Ma
40
2
0
10 Apr 2024
Deep Learning With DAGs
Deep Learning With DAGs
Sourabh Vivek Balgi
Adel Daoud
Jose M. Pena
G. Wodtke
Jesse Zhou
AI4CE
CML
27
1
0
12 Jan 2024
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Deep Backtracking Counterfactuals for Causally Compliant Explanations
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
BDL
29
4
0
11 Oct 2023
Simulating counterfactuals
Simulating counterfactuals
J. Karvanen
S. Tikka
M. Vihola
30
0
0
27 Jun 2023
Advancing Counterfactual Inference through Nonlinear Quantile Regression
Advancing Counterfactual Inference through Nonlinear Quantile Regression
Shaoan Xie
Erdun Gao
Bin Gu
Tongliang Liu
Anton van den Hengel
27
1
0
09 Jun 2023
Causal Component Analysis
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
32
36
0
26 May 2023
Backtracking Counterfactuals
Backtracking Counterfactuals
Julius von Kügelgen
Abdirisak Mohamed
Sander Beckers
LRM
43
16
0
01 Nov 2022
Relating Graph Neural Networks to Structural Causal Models
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
Devendra Singh Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
63
53
0
09 Sep 2021
1