ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.05420
  4. Cited By
Scaling Spherical CNNs

Scaling Spherical CNNs

8 June 2023
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
    GNN
    LRM
ArXivPDFHTML

Papers citing "Scaling Spherical CNNs"

17 / 17 papers shown
Title
Attention on the Sphere
Attention on the Sphere
Boris Bonev
Max Rietmann
Andrea Paris
Alberto Carpentieri
Thorsten Kurth
19
0
0
16 May 2025
$SE(3)$ Equivariant Ray Embeddings for Implicit Multi-View Depth
  Estimation
SE(3)SE(3)SE(3) Equivariant Ray Embeddings for Implicit Multi-View Depth Estimation
Yinshuang Xu
Dian Chen
Katherine Liu
Sergey Zakharov
Rares Ambrus
Kostas Daniilidis
Vitor Campagnolo Guizilini
MDE
35
0
0
11 Nov 2024
3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction
3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction
Jongmin Lee
Minsu Cho
46
1
0
01 Nov 2024
Unitary convolutions for learning on graphs and groups
Unitary convolutions for learning on graphs and groups
B. Kiani
Lukas Fesser
Melanie Weber
GNN
40
1
0
07 Oct 2024
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
41
1
0
03 Oct 2024
EqNIO: Subequivariant Neural Inertial Odometry
EqNIO: Subequivariant Neural Inertial Odometry
Royina Karegoudra Jayanth
Yinshuang Xu
Ziyun Wang
Evangelos Chatzipantazis
Daniel Gehrig
Kostas Daniilidis
48
3
0
12 Aug 2024
ArchesWeather: An efficient AI weather forecasting model at 1.5°
  resolution
ArchesWeather: An efficient AI weather forecasting model at 1.5° resolution
Guillaume Couairon
Christian Lessig
A. Charantonis
C. Monteleoni
27
1
0
23 May 2024
Potential Paradigm Shift in Hazard Risk Management: AI-Based Weather
  Forecast for Tropical Cyclone Hazards
Potential Paradigm Shift in Hazard Risk Management: AI-Based Weather Forecast for Tropical Cyclone Hazards
Kairui Feng
Dazhi Xi
Wei-Ying Ma
Cao Wang
Yuanlong Li
Xuanhong Chen
28
1
0
29 Apr 2024
Reconstructing Historical Climate Fields With Deep Learning
Reconstructing Historical Climate Fields With Deep Learning
Nils Bochow
Anna Poltronieri
M. Rypdal
Niklas Boers
AI4Cl
AI4CE
10
0
0
30 Nov 2023
WeatherBench 2: A benchmark for the next generation of data-driven
  global weather models
WeatherBench 2: A benchmark for the next generation of data-driven global weather models
S. Rasp
Stephan Hoyer
Alexander Merose
I. Langmore
Peter W. Battaglia
...
Carla Bromberg
Jared Sisk
Luke Barrington
Aaron Bell
Fei Sha
AI4Cl
30
107
0
29 Aug 2023
Inference from Real-World Sparse Measurements
Inference from Real-World Sparse Measurements
Arnaud Pannatier
Kyle Matoba
F. Fleuret
AI4TS
20
0
0
20 Oct 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
83
216
0
23 Jun 2022
Global Extreme Heat Forecasting Using Neural Weather Models
Global Extreme Heat Forecasting Using Neural Weather Models
I. Lopez‐Gomez
A. McGovern
Shreya Agrawal
Jason Hickey
AI4Cl
35
36
0
23 May 2022
Möbius Convolutions for Spherical CNNs
Möbius Convolutions for Spherical CNNs
Thomas W. Mitchel
Noam Aigerman
Vladimir G. Kim
Michael Kazhdan
25
11
0
28 Jan 2022
Scattering Networks on the Sphere for Scalable and Rotationally
  Equivariant Spherical CNNs
Scattering Networks on the Sphere for Scalable and Rotationally Equivariant Spherical CNNs
Jason D. McEwen
C. Wallis
Augustine N. Mavor-Parker
31
22
0
04 Feb 2021
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
1