Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2306.06081
Cited By
v1
v2
v3
v4 (latest)
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
20 February 2025
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness"
50 / 53 papers shown
Title
Robust Principles: Architectural Design Principles for Adversarially Robust CNNs
British Machine Vision Conference (BMVC), 2023
Sheng-Hsuan Peng
Weilin Xu
Cory Cornelius
Matthew Hull
Kevin Wenliang Li
Rahul Duggal
Mansi Phute
Jason Martin
Duen Horng Chau
AAML
201
56
0
30 Aug 2023
Robust Classification via a Single Diffusion Model
International Conference on Machine Learning (ICML), 2023
Huanran Chen
Yinpeng Dong
Zhengyi Wang
Xiaohu Yang
Chen-Dong Duan
Hang Su
Jun Zhu
266
77
0
24 May 2023
Decoupled Kullback-Leibler Divergence Loss
Neural Information Processing Systems (NeurIPS), 2023
Jiequan Cui
Zhuotao Tian
Zhisheng Zhong
Xiaojuan Qi
Bei Yu
Hanwang Zhang
201
66
0
23 May 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
IEEE International Conference on Computer Vision (ICCV), 2023
M. Lee
Dongwoo Kim
303
80
0
16 Mar 2023
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models
Neural Information Processing Systems (NeurIPS), 2023
Naman D. Singh
Francesco Croce
Matthias Hein
OOD
286
91
0
03 Mar 2023
Better Diffusion Models Further Improve Adversarial Training
International Conference on Machine Learning (ICML), 2023
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
359
275
0
09 Feb 2023
Adversarial Purification with the Manifold Hypothesis
AAAI Conference on Artificial Intelligence (AAAI), 2022
Zhaoyuan Yang
Zhiwei Xu
Jing Zhang
Leonid Sigal
Peter Tu
AAML
310
8
0
26 Oct 2022
Diffusion Models for Adversarial Purification
International Conference on Machine Learning (ICML), 2022
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
430
572
0
16 May 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
Computer Vision and Pattern Recognition (CVPR), 2022
Yang Liu
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
128
169
0
13 Mar 2022
Data Augmentation Can Improve Robustness
Neural Information Processing Systems (NeurIPS), 2021
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
182
353
0
09 Nov 2021
MEMO: Test Time Robustness via Adaptation and Augmentation
Marvin Zhang
Sergey Levine
Chelsea Finn
OOD
TTA
460
435
0
18 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
261
341
0
18 Oct 2021
Adversarial purification with Score-based generative models
International Conference on Machine Learning (ICML), 2021
Jongmin Yoon
Sung Ju Hwang
Juho Lee
DiffM
170
175
0
11 Jun 2021
A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Neural Information Processing Systems (NeurIPS), 2021
Chin-Wei Huang
Jae Hyun Lim
Aaron Courville
DiffM
236
226
0
05 Jun 2021
Online Adversarial Purification based on Self-Supervision
International Conference on Learning Representations (ICLR), 2021
Changhao Shi
Chester Holtz
Zhengchao Wan
AAML
149
61
0
23 Jan 2021
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
379
356
0
07 Oct 2020
Perceptual Adversarial Robustness: Defense Against Unseen Threat Models
International Conference on Learning Representations (ICLR), 2020
Cassidy Laidlaw
Sahil Singla
Soheil Feizi
AAML
OOD
339
207
0
22 Jun 2020
Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models
International Conference on Learning Representations (ICLR), 2020
Mitch Hill
Jonathan Mitchell
Song-Chun Zhu
AAML
175
83
0
27 May 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
International Conference on Machine Learning (ICML), 2020
Francesco Croce
Matthias Hein
AAML
584
2,136
0
03 Mar 2020
On Adaptive Attacks to Adversarial Example Defenses
Neural Information Processing Systems (NeurIPS), 2020
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
530
899
0
19 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Neural Information Processing Systems (NeurIPS), 2020
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
1.3K
19,430
0
17 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Neural Information Processing Systems (NeurIPS), 2020
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
201
82
0
11 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Neural Information Processing Systems (NeurIPS), 2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
932
47,917
0
03 Dec 2019
Square Attack: a query-efficient black-box adversarial attack via random search
European Conference on Computer Vision (ECCV), 2019
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
656
1,145
0
29 Nov 2019
Imperceptible Adversarial Attacks on Tabular Data
Vincent Ballet
X. Renard
Jonathan Aigrain
Thibault Laugel
P. Frossard
Marcin Detyniecki
240
82
0
08 Nov 2019
On the Variance of the Adaptive Learning Rate and Beyond
International Conference on Learning Representations (ICLR), 2019
Liyuan Liu
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
Jiawei Han
ODL
529
2,098
0
08 Aug 2019
Lookahead Optimizer: k steps forward, 1 step back
Neural Information Processing Systems (NeurIPS), 2019
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
381
795
0
19 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
International Conference on Machine Learning (ICML), 2019
Francesco Croce
Matthias Hein
AAML
401
553
0
03 Jul 2019
Adversarial Examples Are Not Bugs, They Are Features
Neural Information Processing Systems (NeurIPS), 2019
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
549
1,989
0
06 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Neural Information Processing Systems (NeurIPS), 2019
Florian Tramèr
Dan Boneh
AAML
SILM
389
408
0
30 Apr 2019
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition
Yao Qin
Nicholas Carlini
Ian Goodfellow
G. Cottrell
Colin Raffel
AAML
207
412
0
22 Mar 2019
PuVAE: A Variational Autoencoder to Purify Adversarial Examples
IEEE Access (IEEE Access), 2019
Uiwon Hwang
Jaewoo Park
Hyemi Jang
Sungroh Yoon
N. Cho
AAML
135
90
0
02 Mar 2019
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
153
195
0
20 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Sai Li
626
2,818
0
24 Jan 2019
Intrinsic Geometric Vulnerability of High-Dimensional Artificial Intelligence
Luca Bortolussi
G. Sanguinetti
AAML
152
4
0
08 Nov 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
464
1,223
0
17 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
1.1K
3,353
0
01 Feb 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
285
1,510
0
08 Dec 2017
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
376
979
0
08 Dec 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
658
9,877
0
25 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
432
2,243
0
21 Aug 2017
A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
P. Chrabaszcz
I. Loshchilov
Katharina Eggensperger
SSeg
OOD
478
710
0
27 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
1.1K
13,530
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
358
2,918
0
19 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
380
841
0
28 Apr 2017
Adversarial examples in the physical world
International Conference on Learning Representations (ICLR), 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
1.3K
6,378
0
08 Jul 2016
Attribute2Image: Conditional Image Generation from Visual Attributes
Xinchen Yan
Jimei Yang
Kihyuk Sohn
Honglak Lee
DRL
GAN
264
790
0
02 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
614
5,212
0
14 Nov 2015
Cyclical Learning Rates for Training Neural Networks
IEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2015
L. Smith
ODL
636
2,756
0
03 Jun 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
430
3,208
0
20 Feb 2015
1
2
Next