ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.14892
  4. Cited By
Supervised Pretraining Can Learn In-Context Reinforcement Learning

Supervised Pretraining Can Learn In-Context Reinforcement Learning

26 June 2023
Jonathan Lee
Annie Xie
Aldo Pacchiano
Yash Chandak
Chelsea Finn
Ofir Nachum
Emma Brunskill
    OffRL
ArXivPDFHTML

Papers citing "Supervised Pretraining Can Learn In-Context Reinforcement Learning"

26 / 26 papers shown
Title
Toward Efficient Exploration by Large Language Model Agents
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
87
0
0
29 Apr 2025
Text-to-Decision Agent: Learning Generalist Policies from Natural Language Supervision
Text-to-Decision Agent: Learning Generalist Policies from Natural Language Supervision
Shilin Zhang
Zican Hu
Wenhao Wu
Xinyi Xie
Jianxiang Tang
Chunlin Chen
Daoyi Dong
Yu Cheng
Zhenhong Sun
Zhi Wang
OffRL
45
0
0
21 Apr 2025
Yes, Q-learning Helps Offline In-Context RL
Yes, Q-learning Helps Offline In-Context RL
Denis Tarasov
Alexander Nikulin
Ilya Zisman
Albina Klepach
Andrei Polubarov
Nikita Lyubaykin
Alexander Derevyagin
Igor Kiselev
Vladislav Kurenkov
OffRL
OnRL
82
0
0
24 Feb 2025
A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks
A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks
Thomas Schmied
Thomas Adler
Vihang Patil
M. Beck
Korbinian Poppel
Johannes Brandstetter
G. Klambauer
Razvan Pascanu
Sepp Hochreiter
70
4
0
21 Feb 2025
Beyond Numeric Awards: In-Context Dueling Bandits with LLM Agents
Beyond Numeric Awards: In-Context Dueling Bandits with LLM Agents
Fanzeng Xia
Hao Liu
Yisong Yue
Tongxin Li
57
1
0
03 Jan 2025
ICLR: In-Context Learning of Representations
ICLR: In-Context Learning of Representations
Core Francisco Park
Andrew Lee
Ekdeep Singh Lubana
Yongyi Yang
Maya Okawa
Kento Nishi
Martin Wattenberg
Hidenori Tanaka
AIFin
111
3
0
29 Dec 2024
BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games
BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games
Davide Paglieri
Bartłomiej Cupiał
Samuel Coward
Ulyana Piterbarg
Maciej Wolczyk
...
Lerrel Pinto
Rob Fergus
Jakob Foerster
Jack Parker-Holder
Tim Rocktaschel
LLMAG
LRM
101
10
0
20 Nov 2024
N-Gram Induction Heads for In-Context RL: Improving Stability and Reducing Data Needs
N-Gram Induction Heads for In-Context RL: Improving Stability and Reducing Data Needs
Ilya Zisman
Alexander Nikulin
Andrei Polubarov
Nikita Lyubaykin
Vladislav Kurenkov
Andrei Polubarov
Igor Kiselev
Vladislav Kurenkov
OffRL
44
1
0
04 Nov 2024
Problem Solving Through Human-AI Preference-Based Cooperation
Problem Solving Through Human-AI Preference-Based Cooperation
Subhabrata Dutta
Timo Kaufmann
Goran Glavas
Ivan Habernal
Kristian Kersting
Frauke Kreuter
Mira Mezini
Iryna Gurevych
Eyke Hüllermeier
Hinrich Schuetze
82
1
0
14 Aug 2024
BABILong: Testing the Limits of LLMs with Long Context
  Reasoning-in-a-Haystack
BABILong: Testing the Limits of LLMs with Long Context Reasoning-in-a-Haystack
Yuri Kuratov
Aydar Bulatov
Petr Anokhin
Ivan Rodkin
Dmitry Sorokin
Artyom Sorokin
Mikhail Burtsev
RALM
ALM
LRM
ReLM
ELM
42
57
0
14 Jun 2024
Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured Bandit Learning
Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured Bandit Learning
Subhojyoti Mukherjee
Josiah P. Hanna
Qiaomin Xie
Robert Nowak
58
2
0
07 Jun 2024
From Words to Actions: Unveiling the Theoretical Underpinnings of
  LLM-Driven Autonomous Systems
From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems
Jianliang He
Siyu Chen
Fengzhuo Zhang
Zhuoran Yang
LM&Ro
LLMAG
40
2
0
30 May 2024
Preparing for Black Swans: The Antifragility Imperative for Machine
  Learning
Preparing for Black Swans: The Antifragility Imperative for Machine Learning
Ming Jin
27
2
0
18 May 2024
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
Lanqing Li
Hai Zhang
Xinyu Zhang
Shatong Zhu
Junqiao Zhao
Junqiao Zhao
Pheng-Ann Heng
OffRL
26
7
0
04 Feb 2024
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX
Alexander Nikulin
Vladislav Kurenkov
Ilya Zisman
Artem Agarkov
Viacheslav Sinii
Sergey Kolesnikov
21
23
0
19 Dec 2023
Transformers are Provably Optimal In-context Estimators for Wireless Communications
Transformers are Provably Optimal In-context Estimators for Wireless Communications
Vishnu Teja Kunde
Vicram Rajagopalan
Chandra Shekhara Kaushik Valmeekam
Krishna R. Narayanan
S. Shakkottai
D. Kalathil
J. Chamberland
29
4
0
01 Nov 2023
Transformers as Decision Makers: Provable In-Context Reinforcement
  Learning via Supervised Pretraining
Transformers as Decision Makers: Provable In-Context Reinforcement Learning via Supervised Pretraining
Licong Lin
Yu Bai
Song Mei
OffRL
27
42
0
12 Oct 2023
PASTA: Pretrained Action-State Transformer Agents
PASTA: Pretrained Action-State Transformer Agents
Raphael Boige
Yannis Flet-Berliac
Arthur Flajolet
Guillaume Richard
Thomas Pierrot
LM&Ro
OffRL
22
5
0
20 Jul 2023
Large Language Models as General Pattern Machines
Large Language Models as General Pattern Machines
Suvir Mirchandani
F. Xia
Peter R. Florence
Brian Ichter
Danny Driess
Montse Gonzalez Arenas
Kanishka Rao
Dorsa Sadigh
Andy Zeng
LLMAG
37
183
0
10 Jul 2023
The Learnability of In-Context Learning
The Learnability of In-Context Learning
Noam Wies
Yoav Levine
Amnon Shashua
114
89
0
14 Mar 2023
Foundation Models for Decision Making: Problems, Methods, and
  Opportunities
Foundation Models for Decision Making: Problems, Methods, and Opportunities
Sherry Yang
Ofir Nachum
Yilun Du
Jason W. Wei
Pieter Abbeel
Dale Schuurmans
LM&Ro
OffRL
LRM
AI4CE
90
148
0
07 Mar 2023
Structured State Space Models for In-Context Reinforcement Learning
Structured State Space Models for In-Context Reinforcement Learning
Chris Xiaoxuan Lu
Yannick Schroecker
Albert Gu
Emilio Parisotto
Jakob N. Foerster
Satinder Singh
Feryal M. P. Behbahani
AI4TS
84
80
0
07 Mar 2023
In-context Learning and Induction Heads
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
240
453
0
24 Sep 2022
COMBO: Conservative Offline Model-Based Policy Optimization
COMBO: Conservative Offline Model-Based Policy Optimization
Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
OffRL
197
412
0
16 Feb 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
321
1,944
0
04 May 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,568
0
09 Mar 2017
1