Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.05471
Cited By
Scale Alone Does not Improve Mechanistic Interpretability in Vision Models
11 July 2023
Roland S. Zimmermann
Thomas Klein
Wieland Brendel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scale Alone Does not Improve Mechanistic Interpretability in Vision Models"
10 / 10 papers shown
Title
Discovering Influential Neuron Path in Vision Transformers
Yifan Wang
Yifei Liu
Yingdong Shi
C. Li
Anqi Pang
Sibei Yang
Jingyi Yu
Kan Ren
ViT
69
0
0
12 Mar 2025
Linear Explanations for Individual Neurons
Tuomas P. Oikarinen
Tsui-Wei Weng
FAtt
MILM
29
5
0
10 May 2024
Towards Vision-Language Mechanistic Interpretability: A Causal Tracing Tool for BLIP
Vedant Palit
Rohan Pandey
Aryaman Arora
Paul Pu Liang
24
20
0
27 Aug 2023
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
120
316
0
21 Sep 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
58
114
0
06 Dec 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,424
0
23 Jan 2020
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
52
116
0
07 Jun 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,237
0
25 Aug 2016
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
282
39,170
0
01 Sep 2014
1