ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.08232
  4. Cited By
Learning for Counterfactual Fairness from Observational Data

Learning for Counterfactual Fairness from Observational Data

17 July 2023
Jing Ma
Ruocheng Guo
Aidong Zhang
Jundong Li
    FaML
ArXivPDFHTML

Papers citing "Learning for Counterfactual Fairness from Observational Data"

5 / 5 papers shown
Title
Counterfactual Fairness for Predictions using Generative Adversarial
  Networks
Counterfactual Fairness for Predictions using Generative Adversarial Networks
Yuchen Ma
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
36
2
0
26 Oct 2023
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
256
492
0
31 Dec 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
205
202
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
908
0
02 Mar 2020
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1