Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
2307.16048
Cited By
v1
v2
v3
v4 (latest)
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Biometrika (Biometrika), 2023
29 July 2023
Juraj Bodik
V. Chavez-Demoulin
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Structural restrictions in local causal discovery: identifying direct causes of a target variable"
22 / 22 papers shown
Title
CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
Ilia Azizi
Juraj Bodik
Jakob Heiss
Bin Yu
UQCV
UD
362
2
0
10 Jul 2025
Cause-Effect Inference in Location-Scale Noise Models: Maximum Likelihood vs. Independence Testing
Neural Information Processing Systems (NeurIPS), 2023
Xiangyu Sun
Oliver Schulte
CML
364
6
0
26 Jan 2023
On the Identifiability and Estimation of Causal Location-Scale Noise Models
International Conference on Machine Learning (ICML), 2022
Alexander Immer
Christoph Schultheiss
Julia E. Vogt
Bernhard Schölkopf
Peter Buhlmann
Alexander Marx
CML
261
50
0
13 Oct 2022
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise Model
Journal of Computer Science (JCS), 2022
Eric V. Strobl
Thomas A. Lasko
CML
365
42
0
25 May 2022
Causality in extremes of time series
Juraj Bodik
Z. Pawlas
Milan Paluš
AI4TS
204
11
0
20 Dec 2021
Efficient Bayesian network structure learning via local Markov boundary search
Neural Information Processing Systems (NeurIPS), 2021
Ming Gao
Bryon Aragam
368
19
0
12 Oct 2021
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
333
126
0
04 Nov 2020
A Critical View of the Structural Causal Model
Tomer Galanti
Ofir Nabati
Lior Wolf
CML
194
10
0
23 Feb 2020
On Causal Discovery with Equal Variance Assumption
Wenyu Chen
Mathias Drton
Y Samuel Wang
CML
355
96
0
09 Jul 2018
Telling Cause from Effect using MDL-based Local and Global Regression
Alexander Marx
Jilles Vreeken
CML
129
68
0
26 Sep 2017
Invariant Causal Prediction for Sequential Data
Niklas Pfister
Peter Buhlmann
J. Peters
OOD
211
133
0
25 Jun 2017
Learning Quadratic Variance Function (QVF) DAG models via OverDispersion Scoring (ODS)
G. Park
Garvesh Raskutti
CML
221
47
0
28 Apr 2017
Kernel-based Tests for Joint Independence
Niklas Pfister
Peter Buhlmann
Bernhard Schölkopf
J. Peters
320
197
0
01 Mar 2016
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
587
1,046
0
06 Jan 2015
Distinguishing cause from effect using observational data: methods and benchmarks
Journal of machine learning research (JMLR), 2014
Joris M. Mooij
J. Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
CML
278
140
0
11 Dec 2014
Score-based Causal Learning in Additive Noise Models
Christopher Nowzohour
Peter Buhlmann
CML
225
35
0
25 Nov 2013
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
407
619
0
26 Sep 2013
On the Equivalence of Causal Models
Thomas Verma
Judea Pearl
205
27
0
27 Mar 2013
Causal Inference and Causal Explanation with Background Knowledge
Conference on Uncertainty in Artificial Intelligence (UAI), 1995
Christopher Meek
CML
404
669
0
20 Feb 2013
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
497
368
0
11 May 2012
On the Identifiability of the Post-Nonlinear Causal Model
Conference on Uncertainty in Artificial Intelligence (UAI), 2009
Kun Zhang
Aapo Hyvarinen
CML
405
608
0
09 May 2012
Causal inference using the algorithmic Markov condition
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2008
Dominik Janzing
Bernhard Schölkopf
CML
387
329
0
23 Apr 2008
1