ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.16048
  4. Cited By
Structural restrictions in local causal discovery: identifying direct causes of a target variable
v1v2v3v4 (latest)

Structural restrictions in local causal discovery: identifying direct causes of a target variable

Biometrika (Biometrika), 2023
29 July 2023
Juraj Bodik
V. Chavez-Demoulin
    CML
ArXiv (abs)PDFHTML

Papers citing "Structural restrictions in local causal discovery: identifying direct causes of a target variable"

22 / 22 papers shown
Title
CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
Ilia Azizi
Juraj Bodik
Jakob Heiss
Bin Yu
UQCVUD
362
2
0
10 Jul 2025
Cause-Effect Inference in Location-Scale Noise Models: Maximum
  Likelihood vs. Independence Testing
Cause-Effect Inference in Location-Scale Noise Models: Maximum Likelihood vs. Independence TestingNeural Information Processing Systems (NeurIPS), 2023
Xiangyu Sun
Oliver Schulte
CML
364
6
0
26 Jan 2023
On the Identifiability and Estimation of Causal Location-Scale Noise
  Models
On the Identifiability and Estimation of Causal Location-Scale Noise ModelsInternational Conference on Machine Learning (ICML), 2022
Alexander Immer
Christoph Schultheiss
Julia E. Vogt
Bernhard Schölkopf
Peter Buhlmann
Alexander Marx
CML
261
50
0
13 Oct 2022
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise
  Model
Identifying Patient-Specific Root Causes with the Heteroscedastic Noise ModelJournal of Computer Science (JCS), 2022
Eric V. Strobl
Thomas A. Lasko
CML
365
42
0
25 May 2022
Causality in extremes of time series
Causality in extremes of time series
Juraj Bodik
Z. Pawlas
Milan Paluš
AI4TS
204
11
0
20 Dec 2021
Efficient Bayesian network structure learning via local Markov boundary
  search
Efficient Bayesian network structure learning via local Markov boundary searchNeural Information Processing Systems (NeurIPS), 2021
Ming Gao
Bryon Aragam
368
19
0
12 Oct 2021
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CMLOODAI4CE
333
126
0
04 Nov 2020
A Critical View of the Structural Causal Model
A Critical View of the Structural Causal Model
Tomer Galanti
Ofir Nabati
Lior Wolf
CML
194
10
0
23 Feb 2020
On Causal Discovery with Equal Variance Assumption
On Causal Discovery with Equal Variance Assumption
Wenyu Chen
Mathias Drton
Y Samuel Wang
CML
355
96
0
09 Jul 2018
Telling Cause from Effect using MDL-based Local and Global Regression
Telling Cause from Effect using MDL-based Local and Global Regression
Alexander Marx
Jilles Vreeken
CML
129
68
0
26 Sep 2017
Invariant Causal Prediction for Sequential Data
Invariant Causal Prediction for Sequential Data
Niklas Pfister
Peter Buhlmann
J. Peters
OOD
211
133
0
25 Jun 2017
Learning Quadratic Variance Function (QVF) DAG models via OverDispersion
  Scoring (ODS)
Learning Quadratic Variance Function (QVF) DAG models via OverDispersion Scoring (ODS)
G. Park
Garvesh Raskutti
CML
221
47
0
28 Apr 2017
Kernel-based Tests for Joint Independence
Kernel-based Tests for Joint Independence
Niklas Pfister
Peter Buhlmann
Bernhard Schölkopf
J. Peters
320
197
0
01 Mar 2016
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
587
1,046
0
06 Jan 2015
Distinguishing cause from effect using observational data: methods and
  benchmarks
Distinguishing cause from effect using observational data: methods and benchmarksJournal of machine learning research (JMLR), 2014
Joris M. Mooij
J. Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
CML
278
140
0
11 Dec 2014
Score-based Causal Learning in Additive Noise Models
Score-based Causal Learning in Additive Noise Models
Christopher Nowzohour
Peter Buhlmann
CML
225
35
0
25 Nov 2013
Causal Discovery with Continuous Additive Noise Models
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
431
619
0
26 Sep 2013
On the Equivalence of Causal Models
On the Equivalence of Causal Models
Thomas Verma
Judea Pearl
205
27
0
27 Mar 2013
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background KnowledgeConference on Uncertainty in Artificial Intelligence (UAI), 1995
Christopher Meek
CML
404
669
0
20 Feb 2013
Identifiability of Gaussian structural equation models with equal error
  variances
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
497
368
0
11 May 2012
On the Identifiability of the Post-Nonlinear Causal Model
On the Identifiability of the Post-Nonlinear Causal ModelConference on Uncertainty in Artificial Intelligence (UAI), 2009
Kun Zhang
Aapo Hyvarinen
CML
405
608
0
09 May 2012
Causal inference using the algorithmic Markov condition
Causal inference using the algorithmic Markov conditionIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2008
Dominik Janzing
Bernhard Schölkopf
CML
387
329
0
23 Apr 2008
1