Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2307.16273
Cited By
v1
v2 (latest)
zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2023
30 July 2023
Hao Sun
Tonghe Bai
Jason Li
Hongyang R. Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training"
18 / 18 papers shown
Title
Fortytwo: Swarm Inference with Peer-Ranked Consensus
Vladyslav Larin
Ihor Naumenko
Aleksei Ivashov
Ivan Nikitin
Alexander Firsov
48
0
0
27 Oct 2025
Verifiable Fine-Tuning for LLMs: Zero-Knowledge Training Proofs Bound to Data Provenance and Policy
Hasan Akgul
Daniel Borg
Arta Berisha
Amina Rahimova
Andrej Novak
Mila Petrov
ALM
186
0
0
19 Oct 2025
ZKProphet: Understanding Performance of Zero-Knowledge Proofs on GPUs
Tarunesh Verma
Yichao Yuan
Nishil Talati
Todd Austin
65
0
0
17 Sep 2025
VeriLoRA: Fine-Tuning Large Language Models with Verifiable Security via Zero-Knowledge Proofs
Guofu Liao
Taotao Wang
Shengli Zhang
Jiqun Zhang
Shi Long
Dacheng Tao
ALM
151
0
0
29 Aug 2025
ToxiEval-ZKP: A Structure-Private Verification Framework for Molecular Toxicity Repair Tasks
Fei Lin
Tengchao Zhang
Ziyang Gong
Fei Wang
109
0
0
16 Aug 2025
Engineering Trustworthy Machine-Learning Operations with Zero-Knowledge Proofs
Filippo Scaramuzza
Giovanni Quattrocchi
Damian A. Tamburri
112
3
0
26 May 2025
FairZK: A Scalable System to Prove Machine Learning Fairness in Zero-Knowledge
IEEE Symposium on Security and Privacy (S&P), 2025
Tianyu Zhang
Shen Dong
O. Deniz Kose
Yanning Shen
Yanzhe Zhang
FaML
223
2
0
12 May 2025
A Framework for Cryptographic Verifiability of End-to-End AI Pipelines
Kar Balan
Robert Learney
Tim Wood
170
4
0
28 Mar 2025
A Survey of Zero-Knowledge Proof Based Verifiable Machine Learning
Zhizhi Peng
Taotao Wang
Chonghe Zhao
Guofu Liao
Zibin Lin
Yixiao Liu
Bin Cao
Long Shi
Qing Yang
Shengli Zhang
258
18
0
25 Feb 2025
Towards Understanding and Enhancing Security of Proof-of-Training for DNN Model Ownership Verification
Yijia Chang
Hanrui Jiang
Chao Lin
Xinyi Huang
Jian Weng
AAML
343
0
0
06 Oct 2024
Model Agnostic Hybrid Sharding For Heterogeneous Distributed Inference
Claudio Angione
Yue Zhao
Harry Yang
Ahmad Farhan
Fielding Johnston
James Buban
Patrick Colangelo
189
1
0
29 Jul 2024
Complete Security and Privacy for AI Inference in Decentralized Systems
Hongyang Zhang
Yue Zhao
Claudio Angione
Harry Yang
James Buban
Ahmad Farhan
Fielding Johnston
Patrick Colangelo
69
0
0
28 Jul 2024
Laminator: Verifiable ML Property Cards using Hardware-assisted Attestations
Vasisht Duddu
Oskari Jarvinen
Lachlan J. Gunn
Nirmal Asokan
413
3
0
25 Jun 2024
Trustless Audits without Revealing Data or Models
Suppakit Waiwitlikhit
Ion Stoica
Yi Sun
Tatsunori Hashimoto
Daniel Kang
MLAU
88
16
0
06 Apr 2024
Holding Secrets Accountable: Auditing Privacy-Preserving Machine Learning
Hidde Lycklama
Alexander Viand
Nicolas Küchler
Christian Knabenhans
Anwar Hithnawi
187
10
0
24 Feb 2024
Verifiable evaluations of machine learning models using zkSNARKs
Tobin South
Alexander Camuto
Shrey Jain
Shayla Nguyen
Robert Mahari
Christian Paquin
Jason Morton
Alex Pentland
MLAU
ALM
157
18
0
05 Feb 2024
DeepReShape: Redesigning Neural Networks for Efficient Private Inference
N. Jha
Brandon Reagen
265
14
0
20 Apr 2023
Verifiable and Provably Secure Machine Unlearning
Thorsten Eisenhofer
Doreen Riepel
Varun Chandrasekaran
Esha Ghosh
O. Ohrimenko
Nicolas Papernot
AAML
MU
310
37
0
17 Oct 2022
1