ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.07120
  4. Cited By
Position: Key Claims in LLM Research Have a Long Tail of Footnotes

Position: Key Claims in LLM Research Have a Long Tail of Footnotes

14 August 2023
Anna Rogers
A. Luccioni
ArXivPDFHTML

Papers citing "Position: Key Claims in LLM Research Have a Long Tail of Footnotes"

19 / 19 papers shown
Title
What do Language Model Probabilities Represent? From Distribution Estimation to Response Prediction
What do Language Model Probabilities Represent? From Distribution Estimation to Response Prediction
Eitan Wagner
Omri Abend
24
0
0
04 May 2025
Training on the Test Task Confounds Evaluation and Emergence
Training on the Test Task Confounds Evaluation and Emergence
Ricardo Dominguez-Olmedo
Florian E. Dorner
Moritz Hardt
ELM
44
6
1
10 Jul 2024
OLMo: Accelerating the Science of Language Models
OLMo: Accelerating the Science of Language Models
Dirk Groeneveld
Iz Beltagy
Pete Walsh
Akshita Bhagia
Rodney Michael Kinney
...
Jesse Dodge
Kyle Lo
Luca Soldaini
Noah A. Smith
Hanna Hajishirzi
OSLM
124
349
0
01 Feb 2024
CroissantLLM: A Truly Bilingual French-English Language Model
CroissantLLM: A Truly Bilingual French-English Language Model
Manuel Faysse
Patrick Fernandes
Nuno M. Guerreiro
António Loison
Duarte M. Alves
...
François Yvon
André F.T. Martins
Gautier Viaud
C´eline Hudelot
Pierre Colombo
34
33
0
01 Feb 2024
The Elephant in the Room: Analyzing the Presence of Big Tech in Natural
  Language Processing Research
The Elephant in the Room: Analyzing the Presence of Big Tech in Natural Language Processing Research
Mohamed Abdalla
Jan Philip Wahle
Terry Ruas
Aurélie Névéol
Fanny Ducel
Saif M. Mohammad
Karën Fort
56
27
0
04 May 2023
GPT-RE: In-context Learning for Relation Extraction using Large Language
  Models
GPT-RE: In-context Learning for Relation Extraction using Large Language Models
Michele Focchi
Fei Cheng
Zhuoyuan Mao
Qianying Liu
Haiyue Song
Jiwei Li
Sadao Kurohashi
LRM
36
40
0
03 May 2023
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Sébastien Bubeck
Varun Chandrasekaran
Ronen Eldan
J. Gehrke
Eric Horvitz
...
Scott M. Lundberg
Harsha Nori
Hamid Palangi
Marco Tulio Ribeiro
Yi Zhang
ELM
AI4MH
AI4CE
ALM
197
2,953
0
22 Mar 2023
Data Portraits: Recording Foundation Model Training Data
Data Portraits: Recording Foundation Model Training Data
Marc Marone
Benjamin Van Durme
129
30
0
06 Mar 2023
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,261
0
28 Jan 2022
Whose Language Counts as High Quality? Measuring Language Ideologies in
  Text Data Selection
Whose Language Counts as High Quality? Measuring Language Ideologies in Text Data Selection
Suchin Gururangan
Dallas Card
Sarah K. Drier
E. K. Gade
Leroy Z. Wang
Zeyu Wang
Luke Zettlemoyer
Noah A. Smith
157
72
0
25 Jan 2022
Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics
Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics
Prajjwal Bhargava
Aleksandr Drozd
Anna Rogers
83
101
0
04 Oct 2021
Scale Efficiently: Insights from Pre-training and Fine-tuning
  Transformers
Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers
Yi Tay
Mostafa Dehghani
J. Rao
W. Fedus
Samira Abnar
Hyung Won Chung
Sharan Narang
Dani Yogatama
Ashish Vaswani
Donald Metzler
181
89
0
22 Sep 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming
  Few-Shot Prompt Order Sensitivity
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
274
882
0
18 Apr 2021
Competency Problems: On Finding and Removing Artifacts in Language Data
Competency Problems: On Finding and Removing Artifacts in Language Data
Matt Gardner
William Merrill
Jesse Dodge
Matthew E. Peters
Alexis Ross
Sameer Singh
Noah A. Smith
143
106
0
17 Apr 2021
Understanding the Capabilities, Limitations, and Societal Impact of
  Large Language Models
Understanding the Capabilities, Limitations, and Societal Impact of Large Language Models
Alex Tamkin
Miles Brundage
Jack Clark
Deep Ganguli
AILaw
ELM
192
248
0
04 Feb 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
3,054
0
23 Jan 2020
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
29,632
0
16 Jan 2013
1