Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.05934
Cited By
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling
12 September 2023
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Mikhail Galkin
Santiago Miret
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling"
16 / 16 papers shown
Title
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Daniel Levy
Siba Smarak Panigrahi
Sékou-Oumar Kaba
Qiang Zhu
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
Siamak Ravanbakhsh
99
11
0
05 Feb 2025
Benchmarking large language models for materials synthesis: the case of atomic layer deposition
A. Yanguas-Gil
Matthew T. Dearing
J. Elam
Jessica C. Jones
Sungjoon Kim
Adnan Mohammad
Chi Thang Nguyen
Bratin Sengupta
69
1
0
13 Dec 2024
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
Ulrik Friis-Jensen
Frederik L. Johansen
A. Anker
Erik B. Dam
Kirsten M. Ø. Jensen
Raghavendra Selvan
AI4CE
19
3
0
20 Feb 2024
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
32
0
0
08 Dec 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
22
0
0
10 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
19
19
0
03 Oct 2023
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
19
33
0
28 Aug 2023
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
21
105
0
21 Sep 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
73
142
0
23 Jun 2022
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Tian Xie
Xiang Fu
O. Ganea
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
196
224
0
12 Oct 2021
Geometric Algebra Attention Networks for Small Point Clouds
Matthew Spellings
3DPC
45
12
0
05 Oct 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
207
370
0
20 Oct 2020
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
181
878
0
07 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
154
1,748
0
02 Mar 2017
1