Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.14976
Cited By
MoCaE: Mixture of Calibrated Experts Significantly Improves Object Detection
26 September 2023
Kemal Oksuz
Selim Kuzucu
Tom Joy
P. Dokania
MoE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MoCaE: Mixture of Calibrated Experts Significantly Improves Object Detection"
9 / 9 papers shown
Title
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Siyuan Mu
Sen Lin
MoE
74
1
0
10 Mar 2025
Enhancing Domain Adaptation through Prompt Gradient Alignment
Hoang Phan
Lam C. Tran
Quyen Tran
Trung Le
45
0
0
13 Jun 2024
Bridging Precision and Confidence: A Train-Time Loss for Calibrating Object Detection
Muhammad Akhtar Munir
Muhammad Haris Khan
Salman Khan
F. Khan
UQCV
25
15
0
25 Mar 2023
Dense Distinct Query for End-to-End Object Detection
Shilong Zhang
Wang xinjiang
Jiaqi Wang
Jiangmiao Pang
Chengqi Lyu
Wenwei Zhang
Ping Luo
Kai-xiang Chen
64
111
0
22 Mar 2023
Correlation Loss: Enforcing Correlation between Classification and Localization
Fehmi Kahraman
Kemal Oksuz
Sinan Kalkan
Emre Akbas
20
4
0
03 Jan 2023
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
Boyan Zhou
Quan Cui
Xiu-Shen Wei
Zhao-Min Chen
240
765
0
05 Dec 2019
Feature Pyramid Networks for Object Detection
Tsung-Yi Lin
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
154
3,574
0
09 Dec 2016
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,106
0
16 Nov 2016
1