ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.14671
  4. Cited By
SEGIC: Unleashing the Emergent Correspondence for In-Context
  Segmentation

SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation

24 November 2023
Lingchen Meng
Shiyi Lan
Hengduo Li
Jose M. Alvarez
Zuxuan Wu
Yu-Gang Jiang
    VLM
    ISeg
    MLLM
ArXivPDFHTML

Papers citing "SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation"

10 / 10 papers shown
Title
Personalized Instance-based Navigation Toward User-Specific Objects in Realistic Environments
Personalized Instance-based Navigation Toward User-Specific Objects in Realistic Environments
Luca Barsellotti
Roberto Bigazzi
Marcella Cornia
Lorenzo Baraldi
Rita Cucchiara
85
1
0
20 Feb 2025
Matcher: Segment Anything with One Shot Using All-Purpose Feature
  Matching
Matcher: Segment Anything with One Shot Using All-Purpose Feature Matching
Yang Liu
Muzhi Zhu
Hengtao Li
Hao Chen
Xinlong Wang
Chunhua Shen
VLM
MLLM
86
82
0
22 May 2023
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion
  Models
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models
Jiarui Xu
Sifei Liu
Arash Vahdat
Wonmin Byeon
Xiaolong Wang
Shalini De Mello
VLM
198
318
0
08 Mar 2023
TransforMatcher: Match-to-Match Attention for Semantic Correspondence
TransforMatcher: Match-to-Match Attention for Semantic Correspondence
Seungwook Kim
Juhong Min
Minsu Cho
ViT
32
23
0
23 May 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Simple multi-dataset detection
Simple multi-dataset detection
Xingyi Zhou
V. Koltun
Philipp Krahenbuhl
ObjD
216
110
0
25 Feb 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
3,683
0
11 Feb 2021
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
243
1,817
0
18 Aug 2016
1