ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.15990
  4. Cited By
Should We Learn Most Likely Functions or Parameters?

Should We Learn Most Likely Functions or Parameters?

27 November 2023
Shikai Qiu
Tim G. J. Rudner
Sanyam Kapoor
Andrew Gordon Wilson
ArXiv (abs)PDFHTML

Papers citing "Should We Learn Most Likely Functions or Parameters?"

5 / 5 papers shown
Title
Variational Deep Learning via Implicit Regularization
Variational Deep Learning via Implicit Regularization
Jonathan Wenger
Beau Coker
Juraj Marusic
John P. Cunningham
OODUQCVBDL
31
0
0
26 May 2025
Preferential Normalizing Flows
Preferential Normalizing Flows
Petrus Mikkola
Luigi Acerbi
Arto Klami
110
2
0
11 Oct 2024
Can a Confident Prior Replace a Cold Posterior?
Can a Confident Prior Replace a Cold Posterior?
Martin Marek
Brooks Paige
Pavel Izmailov
UQCVBDL
61
4
0
02 Mar 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCVBDL
131
35
0
01 Feb 2024
Informative Priors Improve the Reliability of Multimodal Clinical Data
  Classification
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
66
3
0
17 Nov 2023
1