ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.18021
  4. Cited By
Understanding and Improving In-Context Learning on Vision-language
  Models

Understanding and Improving In-Context Learning on Vision-language Models

29 November 2023
Shuo Chen
Zhen Han
Bailan He
Mark Buckley
Philip H. S. Torr
Volker Tresp
Jindong Gu
ArXivPDFHTML

Papers citing "Understanding and Improving In-Context Learning on Vision-language Models"

4 / 4 papers shown
Title
CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
Cristiano Patrício
Isabel Rio-Torto
J. S. Cardoso
Luís F. Teixeira
João C. Neves
VLM
109
0
0
21 Jan 2025
BLIP: Bootstrapping Language-Image Pre-training for Unified
  Vision-Language Understanding and Generation
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Junnan Li
Dongxu Li
Caiming Xiong
S. Hoi
MLLM
BDL
VLM
CLIP
380
4,010
0
28 Jan 2022
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
Zhengyuan Yang
Zhe Gan
Jianfeng Wang
Xiaowei Hu
Yumao Lu
Zicheng Liu
Lijuan Wang
161
401
0
10 Sep 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming
  Few-Shot Prompt Order Sensitivity
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
274
882
0
18 Apr 2021
1