ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.17055
  4. Cited By
Improving In-context Learning via Bidirectional Alignment

Improving In-context Learning via Bidirectional Alignment

28 December 2023
Chengwei Qin
Wenhan Xia
Fangkai Jiao
Chen Chen
Yuchen Hu
Bosheng Ding
Shafiq R. Joty
ArXivPDFHTML

Papers citing "Improving In-context Learning via Bidirectional Alignment"

14 / 14 papers shown
Title
In-Context Learning with Iterative Demonstration Selection
In-Context Learning with Iterative Demonstration Selection
Chengwei Qin
Aston Zhang
C. L. P. Chen
Anirudh Dagar
Wenming Ye
LRM
58
38
0
31 Dec 2024
KTO: Model Alignment as Prospect Theoretic Optimization
KTO: Model Alignment as Prospect Theoretic Optimization
Kawin Ethayarajh
Winnie Xu
Niklas Muennighoff
Dan Jurafsky
Douwe Kiela
153
437
0
02 Feb 2024
Pre-Training to Learn in Context
Pre-Training to Learn in Context
Yuxian Gu
Li Dong
Furu Wei
Minlie Huang
CLIP
LRM
ReLM
104
37
0
16 May 2023
Distilling Step-by-Step! Outperforming Larger Language Models with Less
  Training Data and Smaller Model Sizes
Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
Lokesh Nagalapatti
Chun-Liang Li
Chih-Kuan Yeh
Hootan Nakhost
Yasuhisa Fujii
Alexander Ratner
Ranjay Krishna
Chen-Yu Lee
Tomas Pfister
ALM
198
283
0
03 May 2023
In-Context Learning Unlocked for Diffusion Models
In-Context Learning Unlocked for Diffusion Models
Zhendong Wang
Yifan Jiang
Yadong Lu
Yelong Shen
Pengcheng He
Weizhu Chen
Zhangyang Wang
Mingyuan Zhou
VLM
DiffM
80
68
0
01 May 2023
In-context Learning and Induction Heads
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
234
453
0
24 Sep 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,261
0
28 Jan 2022
CrossFit: A Few-shot Learning Challenge for Cross-task Generalization in
  NLP
CrossFit: A Few-shot Learning Challenge for Cross-task Generalization in NLP
Qinyuan Ye
Bill Yuchen Lin
Xiang Ren
199
167
0
18 Apr 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming
  Few-Shot Prompt Order Sensitivity
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
274
882
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,296
0
17 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
3,054
0
23 Jan 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
234
11,568
0
09 Mar 2017
1