ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05821
  4. Cited By
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents

Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents

11 January 2024
Quentin Delfosse
Sebastian Sztwiertnia
M. Rothermel
Wolfgang Stammer
Kristian Kersting
ArXivPDFHTML

Papers citing "Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents"

12 / 12 papers shown
Title
Interpretable end-to-end Neurosymbolic Reinforcement Learning agents
Interpretable end-to-end Neurosymbolic Reinforcement Learning agents
Nils Grandien
Quentin Delfosse
Kristian Kersting
OffRL
21
2
0
18 Oct 2024
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
BlendRL: A Framework for Merging Symbolic and Neural Policy Learning
Hikaru Shindo
Quentin Delfosse
D. Dhami
Kristian Kersting
33
3
0
15 Oct 2024
Towards Generalizable Reinforcement Learning via Causality-Guided Self-Adaptive Representations
Yupei Yang
Biwei Huang
Fan Feng
Xinyue Wang
Shikui Tu
Lei Xu
CML
OOD
TTA
27
1
0
30 Jul 2024
Boosting Object Representation Learning via Motion and Object Continuity
Boosting Object Representation Learning via Motion and Object Continuity
Quentin Delfosse
Wolfgang Stammer
Thomas Rothenbacher
Dwarak Vittal
Kristian Kersting
OCL
14
20
0
16 Nov 2022
Relative Behavioral Attributes: Filling the Gap between Symbolic Goal
  Specification and Reward Learning from Human Preferences
Relative Behavioral Attributes: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences
L. Guan
Karthik Valmeekam
Subbarao Kambhampati
42
8
0
28 Oct 2022
Neural Networks are Decision Trees
Neural Networks are Decision Trees
Çağlar Aytekin
FAtt
24
24
0
11 Oct 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
93
64
0
31 May 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,261
0
28 Jan 2022
Interactive Disentanglement: Learning Concepts by Interacting with their
  Prototype Representations
Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations
Wolfgang Stammer
Marius Memmel
P. Schramowski
Kristian Kersting
76
25
0
04 Dec 2021
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Quentin Delfosse
P. Schramowski
Martin Mundt
Alejandro Molina
Kristian Kersting
24
8
0
18 Feb 2021
AI safety via debate
AI safety via debate
G. Irving
Paul Christiano
Dario Amodei
196
199
0
02 May 2018
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
266
35,677
0
08 Jun 2015
1