ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05856
  4. Cited By
Seven Failure Points When Engineering a Retrieval Augmented Generation
  System

Seven Failure Points When Engineering a Retrieval Augmented Generation System

11 January 2024
Scott Barnett
Stefanus Kurniawan
Srikanth Thudumu
Zach Brannelly
Mohamed Abdelrazek
ArXivPDFHTML

Papers citing "Seven Failure Points When Engineering a Retrieval Augmented Generation System"

12 / 12 papers shown
Title
MARK: Memory Augmented Refinement of Knowledge
MARK: Memory Augmented Refinement of Knowledge
Anish Ganguli
Prabal Deb
Debleena Banerjee
CLL
72
0
0
08 May 2025
FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
X. Wang
Jijun Chi
Zhenghan Tai
Tung Sum Thomas Kwok
Muzhi Li
...
Suyuchen Wang
Yihong Wu
Jerry Huang
Jingrui Tian
Ling Zhou
67
0
0
20 Apr 2025
OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Ahsan Bilal
Beiyu Lin
OffRL
RALM
AI4MH
42
1
0
02 Apr 2025
Visual RAG: Expanding MLLM visual knowledge without fine-tuning
Visual RAG: Expanding MLLM visual knowledge without fine-tuning
Mirco Bonomo
Simone Bianco
VLM
58
5
0
18 Jan 2025
A RAG Approach for Generating Competency Questions in Ontology Engineering
A RAG Approach for Generating Competency Questions in Ontology Engineering
Xueli Pan
Jacco van Ossenbruggen
Victor de Boer
Zhisheng Huang
23
0
0
13 Sep 2024
Recent Advances in Attack and Defense Approaches of Large Language
  Models
Recent Advances in Attack and Defense Approaches of Large Language Models
Jing Cui
Yishi Xu
Zhewei Huang
Shuchang Zhou
Jianbin Jiao
Junge Zhang
PILM
AAML
52
1
0
05 Sep 2024
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
HyPA-RAG: A Hybrid Parameter Adaptive Retrieval-Augmented Generation System for AI Legal and Policy Applications
Rishi Kalra
Zekun Wu
Ayesha Gulley
Airlie Hilliard
Xin Guan
Adriano Soares Koshiyama
Philip C. Treleaven
RALM
AILaw
47
5
0
29 Aug 2024
Hallucination-Free? Assessing the Reliability of Leading AI Legal
  Research Tools
Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools
Varun Magesh
Faiz Surani
Matthew Dahl
Mirac Suzgun
Christopher D. Manning
Daniel E. Ho
HILM
ELM
AILaw
27
65
0
30 May 2024
Evaluation of Retrieval-Augmented Generation: A Survey
Evaluation of Retrieval-Augmented Generation: A Survey
Hao Yu
Aoran Gan
Kai Zhang
Shiwei Tong
Qi Liu
Zhaofeng Liu
3DV
57
79
0
13 May 2024
AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
William Fleshman
Aleem Khan
Marc Marone
Benjamin Van Durme
CLL
KELM
42
3
0
12 Apr 2024
CONFLARE: CONFormal LArge language model REtrieval
CONFLARE: CONFormal LArge language model REtrieval
Pouria Rouzrokh
S. Faghani
Cooper Gamble
Moein Shariatnia
Bradley J. Erickson
3DV
RALM
42
2
0
04 Apr 2024
Dialectical Alignment: Resolving the Tension of 3H and Security Threats
  of LLMs
Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs
Shu Yang
Jiayuan Su
Han Jiang
Mengdi Li
Keyuan Cheng
Muhammad Asif Ali
Lijie Hu
Di Wang
16
5
0
30 Mar 2024
1