ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07494
  4. Cited By
Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks

Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks

15 January 2024
Zihao Wang
Zhen Wu
ArXivPDFHTML

Papers citing "Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks"

3 / 3 papers shown
Title
Real-Time Machine-Learning-Based Optimization Using Input Convex LSTM
Real-Time Machine-Learning-Based Optimization Using Input Convex LSTM
Zihao Wang
Donghan Yu
Zhen Wu
11
1
0
13 Nov 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
83
258
0
11 Mar 2023
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
163
596
0
22 Sep 2016
1