ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07494
  4. Cited By
Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
v1v2v3v4v5 (latest)

Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks

15 January 2024
Zihao Wang
Zhe Wu
ArXiv (abs)PDFHTML

Papers citing "Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks"

20 / 20 papers shown
Title
Real-Time Machine-Learning-Based Optimization Using Input Convex LSTM
Real-Time Machine-Learning-Based Optimization Using Input Convex LSTMApplied Energy (Appl. Energy), 2023
Zihao Wang
Donghan Yu
Zhe Wu
294
1
0
13 Nov 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Resurrecting Recurrent Neural Networks for Long SequencesInternational Conference on Machine Learning (ICML), 2023
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
477
403
0
11 Mar 2023
Spike-inspired Rank Coding for Fast and Accurate Recurrent Neural
  Networks
Spike-inspired Rank Coding for Fast and Accurate Recurrent Neural Networks
Alan Jeffares
Qinghai Guo
Pontus Stenetorp
Timoleon Moraitis
176
17
0
06 Oct 2021
UnICORNN: A recurrent model for learning very long time dependencies
UnICORNN: A recurrent model for learning very long time dependenciesInternational Conference on Machine Learning (ICML), 2021
T. Konstantin Rusch
Siddhartha Mishra
316
72
0
09 Mar 2021
Long Range Arena: A Benchmark for Efficient Transformers
Long Range Arena: A Benchmark for Efficient Transformers
Yi Tay
Mostafa Dehghani
Samira Abnar
Songlin Yang
Dara Bahri
Philip Pham
J. Rao
Liu Yang
Sebastian Ruder
Donald Metzler
375
825
0
08 Nov 2020
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic
  Models
Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic Models
E. Zelikman
Sharon Zhou
Jeremy Irvin
Cooper D. Raterink
Hao Sheng
Anand Avati
Jack Kelly
Ram Rajagopal
A. Ng
D. Gagne
138
15
0
09 Oct 2020
Lipschitz Recurrent Neural Networks
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
277
123
0
22 Jun 2020
Achieving robustness in classification using optimal transport with
  hinge regularization
Achieving robustness in classification using optimal transport with hinge regularizationComputer Vision and Pattern Recognition (CVPR), 2020
M. Serrurier
Franck Mamalet
Alberto González Sanz
Thibaut Boissin
Jean-Michel Loubes
E. del Barrio
AAML
228
43
0
11 Jun 2020
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural NetworksNeural Information Processing Systems (NeurIPS), 2019
Mahyar Fazlyab
Avi Schwarzschild
Hamed Hassani
M. Morari
George J. Pappas
343
511
0
12 Jun 2019
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
335
351
0
13 Nov 2018
Lipschitz regularity of deep neural networks: analysis and efficient
  estimation
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
379
604
0
28 May 2018
Independently Recurrent Neural Network (IndRNN): Building A Longer and
  Deeper RNN
Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN
Shuai Li
W. Li
Chris Cook
Ce Zhu
Yanbo Gao
282
795
0
13 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
421
4,731
0
16 Feb 2018
Overcoming the vanishing gradient problem in plain recurrent networks
Overcoming the vanishing gradient problem in plain recurrent networks
Yuhuang Hu
Adrian E. G. Huber
Jithendar Anumula
Shih-Chii Liu
GNN
272
113
0
18 Jan 2018
On the Properties of the Softmax Function with Application in Game
  Theory and Reinforcement Learning
On the Properties of the Softmax Function with Application in Game Theory and Reinforcement Learning
Bolin Gao
Lacra Pavel
FAtt
356
348
0
03 Apr 2017
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
778
731
0
22 Sep 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
617
11,686
0
21 Jul 2016
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
Quoc V. Le
Navdeep Jaitly
Geoffrey E. Hinton
ODL
225
744
0
03 Apr 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
1.4K
45,531
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic OptimizationInternational Conference on Learning Representations (ICLR), 2014
Diederik P. Kingma
Jimmy Ba
ODL
4.6K
160,594
0
22 Dec 2014
1