ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.00809
  4. Cited By
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

1 February 2024
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
David B. Dunson
Maurizio Filippone
Vincent Fortuin
Philipp Hennig
José Miguel Hernández-Lobato
A. Hubin
Alexander Immer
Theofanis Karaletsos
Mohammad Emtiyaz Khan
Agustinus Kristiadi
Yingzhen Li
Stephan Mandt
Christopher Nemeth
Michael A. Osborne
Tim G. J. Rudner
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI"

17 / 17 papers shown
Title
Streamlining Prediction in Bayesian Deep Learning
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
89
1
0
27 Nov 2024
Generative Edge Detection with Stable Diffusion
Generative Edge Detection with Stable Diffusion
Caixia Zhou
Yaping Huang
Mochu Xiang
Jiahui Ren
Haibin Ling
Jing Zhang
25
0
0
04 Oct 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
52
1
0
07 Jun 2024
Tractable Function-Space Variational Inference in Bayesian Neural
  Networks
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
55
39
0
28 Dec 2023
Function-Space Regularization in Neural Networks: A Probabilistic
  Perspective
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner
Sanyam Kapoor
Shikai Qiu
A. Wilson
24
12
0
28 Dec 2023
Informative Priors Improve the Reliability of Multimodal Clinical Data
  Classification
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
30
3
0
17 Nov 2023
Learning Layer-wise Equivariances Automatically using Gradients
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
28
12
0
09 Oct 2023
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
66
19
0
30 May 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
65
8
0
24 May 2022
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative
  Priors
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
Ravid Shwartz-Ziv
Micah Goldblum
Hossein Souri
Sanyam Kapoor
Chen Zhu
Yann LeCun
A. Wilson
UQCV
BDL
54
43
0
20 May 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
39
55
0
23 Feb 2022
Probing as Quantifying Inductive Bias
Probing as Quantifying Inductive Bias
Alexander Immer
Lucas Torroba Hennigen
Vincent Fortuin
Ryan Cotterell
29
14
0
15 Oct 2021
Bayesian neural network unit priors and generalized Weibull-tail
  property
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
47
9
0
06 Oct 2021
Fast Predictive Uncertainty for Classification with Bayesian Deep
  Networks
Fast Predictive Uncertainty for Classification with Bayesian Deep Networks
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
BDL
UQCV
49
30
0
02 Mar 2020
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
188
495
0
11 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
245
9,042
0
06 Jun 2015
1