Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2402.01338
Cited By
v1
v2 (latest)
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
2 February 2024
Youngkyoung Bae
Seungwoong Ha
Hawoong Jeong
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks"
17 / 17 papers shown
Learning Stochastic Thermodynamics Directly from Correlation and Trajectory-Fluctuation Currents
Jinghao Lyu
Kyle J. Ray
James P. Crutchfield
AI4CE
220
3
0
26 Apr 2025
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
395
12
0
30 Mar 2025
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
280
35
0
28 Sep 2023
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
International Conference on Machine Learning (ICML), 2022
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
268
11
0
27 May 2022
GradDiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization
Sungyoon Lee
Hoki Kim
Jaewook Lee
AAML
249
69
0
06 Jul 2021
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
330
1,147
0
14 Oct 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
IEEE Computational Intelligence Magazine (IEEE CIM), 2020
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
558
783
0
14 Jul 2020
Detection of Gravitational Waves Using Bayesian Neural Networks
Yu-Chiung Lin
Jiun-Huei Proty Wu
221
29
0
08 Jul 2020
Learning entropy production via neural networks
Physical Review Letters (PRL), 2020
Dong-Kyum Kim
Youngkyoung Bae
Sangyun Lee
Hawoong Jeong
328
46
0
09 Mar 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
International Conference on Learning Representations (ICLR), 2020
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
498
344
0
15 Feb 2020
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
IEEE International Conference on Robotics and Automation (ICRA), 2019
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
277
116
0
21 Sep 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
700
910
0
07 Feb 2019
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Journal of Computational Physics (JCP), 2018
Jianlong Wu
P. Perdikaris
AI4CE
PINN
311
394
0
09 Nov 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
294
181
0
01 Oct 2018
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
1.7K
5,306
0
04 Jan 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
International Conference on Machine Learning (ICML), 2015
Y. Gal
Zoubin Ghahramani
UQCV
BDL
2.5K
10,703
0
06 Jun 2015
Adam: A Method for Stochastic Optimization
International Conference on Learning Representations (ICLR), 2014
Diederik P. Kingma
Jimmy Ba
ODL
4.7K
161,471
0
22 Dec 2014
1