ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01928
  4. Cited By
Robust Counterfactual Explanations in Machine Learning: A Survey

Robust Counterfactual Explanations in Machine Learning: A Survey

2 February 2024
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
    OffRL
    CML
ArXivPDFHTML

Papers citing "Robust Counterfactual Explanations in Machine Learning: A Survey"

7 / 7 papers shown
Title
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Keita Kinjo
29
1
0
10 Jan 2025
Time Can Invalidate Algorithmic Recourse
Time Can Invalidate Algorithmic Recourse
Giovanni De Toni
Stefano Teso
Bruno Lepri
Andrea Passerini
29
0
0
10 Oct 2024
Algorithmic Recourse with Missing Values
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
11
2
0
28 Apr 2023
Distributionally Robust Recourse Action
Distributionally Robust Recourse Action
D. Nguyen
Ngoc H. Bui
Viet Anh Nguyen
31
6
0
22 Feb 2023
Counterfactual Plans under Distributional Ambiguity
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
54
24
0
29 Jan 2022
Consistent Counterfactuals for Deep Models
Consistent Counterfactuals for Deep Models
Emily Black
Zifan Wang
Matt Fredrikson
Anupam Datta
BDL
OffRL
OOD
34
31
0
06 Oct 2021
On the Fairness of Causal Algorithmic Recourse
On the Fairness of Causal Algorithmic Recourse
Julius von Kügelgen
Amir-Hossein Karimi
Umang Bhatt
Isabel Valera
Adrian Weller
Bernhard Schölkopf
FaML
70
82
0
13 Oct 2020
1