ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16788
  4. Cited By
Why Transformers Need Adam: A Hessian Perspective

Why Transformers Need Adam: A Hessian Perspective

26 February 2024
Yushun Zhang
Congliang Chen
Tian Ding
Ziniu Li
Ruoyu Sun
Zhimin Luo
ArXivPDFHTML

Papers citing "Why Transformers Need Adam: A Hessian Perspective"

19 / 19 papers shown
Title
COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs
COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs
Liming Liu
Zhenghao Xu
Zixuan Zhang
Hao Kang
Zichong Li
Chen Liang
Weizhu Chen
T. Zhao
69
1
0
24 Feb 2025
Encryption-Friendly LLM Architecture
Encryption-Friendly LLM Architecture
Donghwan Rho
Taeseong Kim
Minje Park
Jung Woo Kim
Hyunsik Chae
Jung Hee Cheon
Ernest K. Ryu
52
1
0
24 Feb 2025
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
45
0
0
10 Feb 2025
Adaptive Batch Size Schedules for Distributed Training of Language Models with Data and Model Parallelism
Adaptive Batch Size Schedules for Distributed Training of Language Models with Data and Model Parallelism
Tim Tsz-Kit Lau
Weijian Li
Chenwei Xu
Han Liu
Mladen Kolar
82
0
0
30 Dec 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
28
0
0
11 Nov 2024
What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
Weronika Ormaniec
Felix Dangel
Sidak Pal Singh
33
6
0
14 Oct 2024
MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Yupeng Chen
Senmiao Wang
Zhihang Lin
Zhihang Lin
Yushun Zhang
Tian Ding
Ruoyu Sun
Ruoyu Sun
CLL
72
1
0
30 Jul 2024
Deconstructing What Makes a Good Optimizer for Language Models
Deconstructing What Makes a Good Optimizer for Language Models
Rosie Zhao
Depen Morwani
David Brandfonbrener
Nikhil Vyas
Sham Kakade
42
17
0
10 Jul 2024
AdaFisher: Adaptive Second Order Optimization via Fisher Information
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien Martins Gomes
Yanlei Zhang
Eugene Belilovsky
Guy Wolf
Mahdi S. Hosseini
ODL
74
2
0
26 May 2024
Does SGD really happen in tiny subspaces?
Does SGD really happen in tiny subspaces?
Minhak Song
Kwangjun Ahn
Chulhee Yun
56
4
1
25 May 2024
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Pingzhi Li
Junyu Liu
Hanrui Wang
Tianlong Chen
76
1
0
30 Apr 2024
Convergence of Adam Under Relaxed Assumptions
Convergence of Adam Under Relaxed Assumptions
Haochuan Li
Alexander Rakhlin
Ali Jadbabaie
29
53
0
27 Apr 2023
Noise Is Not the Main Factor Behind the Gap Between SGD and Adam on
  Transformers, but Sign Descent Might Be
Noise Is Not the Main Factor Behind the Gap Between SGD and Adam on Transformers, but Sign Descent Might Be
Frederik Kunstner
Jacques Chen
J. Lavington
Mark W. Schmidt
40
66
0
27 Apr 2023
Stabilizing Transformer Training by Preventing Attention Entropy
  Collapse
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
Shuangfei Zhai
Tatiana Likhomanenko
Etai Littwin
Dan Busbridge
Jason Ramapuram
Yizhe Zhang
Jiatao Gu
J. Susskind
AAML
38
64
0
11 Mar 2023
GLM-130B: An Open Bilingual Pre-trained Model
GLM-130B: An Open Bilingual Pre-trained Model
Aohan Zeng
Xiao Liu
Zhengxiao Du
Zihan Wang
Hanyu Lai
...
Jidong Zhai
Wenguang Chen
Peng-Zhen Zhang
Yuxiao Dong
Jie Tang
BDL
LRM
242
1,070
0
05 Oct 2022
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,554
0
04 May 2021
Towards Practical Adam: Non-Convexity, Convergence Theory, and
  Mini-Batch Acceleration
Towards Practical Adam: Non-Convexity, Convergence Theory, and Mini-Batch Acceleration
Congliang Chen
Li Shen
Fangyu Zou
Wei Liu
36
26
0
14 Jan 2021
A Simple Convergence Proof of Adam and Adagrad
A Simple Convergence Proof of Adam and Adagrad
Alexandre Défossez
Léon Bottou
Francis R. Bach
Nicolas Usunier
56
143
0
05 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,424
0
23 Jan 2020
1