Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.17641
Cited By
Variational Learning is Effective for Large Deep Networks
27 February 2024
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
Clement Bazan
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Learning is Effective for Large Deep Networks"
9 / 9 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
41
0
0
10 Feb 2025
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
91
1
0
27 Nov 2024
A Bayesian Interpretation of Adaptive Low-Rank Adaptation
Haolin Chen
Philip N. Garner
37
1
0
16 Sep 2024
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Beau Coker
W. Bruinsma
David R. Burt
Weiwei Pan
Finale Doshi-Velez
UQCV
BDL
29
21
0
23 Feb 2022
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
264
0
13 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
244
35,884
0
25 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1