Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2402.17700
Cited By
RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
27 February 2024
Jing-ling Huang
Zhengxuan Wu
Christopher Potts
Mor Geva
Atticus Geiger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations"
10 / 10 papers shown
Title
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks
Jiuding Sun
Jing Huang
Sidharth Baskaran
Karel DÓosterlinck
Christopher Potts
Michael Sklar
Atticus Geiger
AI4CE
55
0
0
13 Mar 2025
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
Daking Rai
Yilun Zhou
Shi Feng
Abulhair Saparov
Ziyu Yao
47
18
0
02 Jul 2024
The Geometry of Truth: Emergent Linear Structure in Large Language Model Representations of True/False Datasets
Samuel Marks
Max Tegmark
HILM
85
164
0
10 Oct 2023
Finding Neurons in a Haystack: Case Studies with Sparse Probing
Wes Gurnee
Neel Nanda
Matthew Pauly
Katherine Harvey
Dmitrii Troitskii
Dimitris Bertsimas
MILM
153
170
0
02 May 2023
How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model
Michael Hanna
Ollie Liu
Alexandre Variengien
LRM
170
116
0
30 Apr 2023
Dissecting Recall of Factual Associations in Auto-Regressive Language Models
Mor Geva
Jasmijn Bastings
Katja Filippova
Amir Globerson
KELM
180
152
0
28 Apr 2023
Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
Atticus Geiger
Zhengxuan Wu
Christopher Potts
Thomas F. Icard
Noah D. Goodman
CML
73
98
0
05 Mar 2023
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
34
13
0
30 Dec 2022
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
205
486
0
01 Nov 2022
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
196
876
0
03 May 2018
1