Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.06402
Cited By
One size doesn't fit all: Predicting the Number of Examples for In-Context Learning
11 March 2024
Manish Chandra
Debasis Ganguly
Yiwen Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"One size doesn't fit all: Predicting the Number of Examples for In-Context Learning"
8 / 8 papers shown
Title
Few-shot In-context Learning for Knowledge Base Question Answering
Tianle Li
Xueguang Ma
Alex Zhuang
Yu Gu
Yu-Chuan Su
Wenhu Chen
94
75
0
02 May 2023
Ask Me Anything: A simple strategy for prompting language models
Simran Arora
A. Narayan
Mayee F. Chen
Laurel J. Orr
Neel Guha
Kush S. Bhatia
Ines Chami
Frederic Sala
Christopher Ré
ReLM
LRM
200
205
0
05 Oct 2022
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
303
11,730
0
04 Mar 2022
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
274
1,114
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-
3
3
3
?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,296
0
17 Jan 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
245
1,977
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
258
1,584
0
21 Jan 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,927
0
20 Apr 2018
1