ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07532
  4. Cited By
Open-World Semantic Segmentation Including Class Similarity

Open-World Semantic Segmentation Including Class Similarity

12 March 2024
Matteo Sodano
Federico Magistri
Lucas Nunes
Jens Behley
C. Stachniss
    VLM
ArXivPDFHTML

Papers citing "Open-World Semantic Segmentation Including Class Similarity"

8 / 8 papers shown
Title
Open-set Anomaly Segmentation in Complex Scenarios
Open-set Anomaly Segmentation in Complex Scenarios
Song Xia
Yi Yu
Henghui Ding
Wenhan Yang
S. Liu
Alex C. Kot
Xudong Jiang
DiffM
50
0
0
28 Apr 2025
OW-Rep: Open World Object Detection with Instance Representation Learning
OW-Rep: Open World Object Detection with Instance Representation Learning
Sunoh Lee
Minsik Jeon
Jihong Min
Junwon Seo
ObjD
57
0
0
24 Sep 2024
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation
Jongheon Jeong
Yang Zou
Taewan Kim
Dongqing Zhang
Avinash Ravichandran
O. Dabeer
VLM
67
184
0
26 Mar 2023
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
  applied to Out-of-Distribution Segmentation
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks applied to Out-of-Distribution Segmentation
Kira Maag
Tobias Riedlinger
UQCV
22
7
0
13 Mar 2023
Robust Double-Encoder Network for RGB-D Panoptic Segmentation
Robust Double-Encoder Network for RGB-D Panoptic Segmentation
Matteo Sodano
Federico Magistri
Tiziano Guadagnino
Jens Behley
C. Stachniss
24
11
0
06 Oct 2022
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
158
401
0
12 Oct 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1