ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08152
  4. Cited By
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor
  Re-planning

Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning

13 March 2024
Gilhyun Ryou
Geoffrey Wang
S. Karaman
ArXivPDFHTML

Papers citing "Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning"

7 / 7 papers shown
Title
Multi-Fidelity Policy Gradient Algorithms
Multi-Fidelity Policy Gradient Algorithms
Xinjie Liu
Cyrus Neary
Kushagra Gupta
Christian Ellis
Ufuk Topcu
David Fridovich-Keil
OffRL
77
0
0
07 Mar 2025
Improving alignment of dialogue agents via targeted human judgements
Improving alignment of dialogue agents via targeted human judgements
Amelia Glaese
Nat McAleese
Maja Trkebacz
John Aslanides
Vlad Firoiu
...
John F. J. Mellor
Demis Hassabis
Koray Kavukcuoglu
Lisa Anne Hendricks
G. Irving
ALM
AAML
225
495
0
28 Sep 2022
Semi-supervised reward learning for offline reinforcement learning
Semi-supervised reward learning for offline reinforcement learning
Ksenia Konyushkova
Konrad Zolna
Y. Aytar
Alexander Novikov
Scott E. Reed
Serkan Cabi
Nando de Freitas
SSL
OffRL
56
23
0
12 Dec 2020
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
401
0
06 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
84
271
0
24 Feb 2014
Recursive co-kriging model for Design of Computer experiments with
  multiple levels of fidelity with an application to hydrodynamic
Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic
Loic Le Gratiet
AI4CE
86
290
0
02 Oct 2012
1