ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16707
  4. Cited By
One-Shot Domain Incremental Learning
v1v2 (latest)

One-Shot Domain Incremental Learning

25 March 2024
Yasushi Esaki
Satoshi Koide
Takuro Kutsuna
    CLLVLM
ArXiv (abs)PDFHTML

Papers citing "One-Shot Domain Incremental Learning"

25 / 25 papers shown
Title
5G-DIL: Domain Incremental Learning with Similarity-Aware Sampling for Dynamic 5G Indoor Localization
5G-DIL: Domain Incremental Learning with Similarity-Aware Sampling for Dynamic 5G Indoor LocalizationInternational Conference on Localization and Global Navigation Satellite System (ICL-GNSS), 2025
Nisha Lakshmana Raichur
Lucas Heublein
Christopher Mutschler
Felix Ott
183
0
0
23 May 2025
Constrained Few-shot Class-incremental Learning
Constrained Few-shot Class-incremental LearningComputer Vision and Pattern Recognition (CVPR), 2022
Michael Hersche
G. Karunaratne
G. Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
CLL
249
173
0
30 Mar 2022
Continual Normalization: Rethinking Batch Normalization for Online
  Continual Learning
Continual Normalization: Rethinking Batch Normalization for Online Continual LearningInternational Conference on Learning Representations (ICLR), 2022
Quang Pham
Chenghao Liu
Guosheng Lin
BDLOnRL
164
66
0
30 Mar 2022
Continual Learning for Multivariate Time Series Tasks with Variable
  Input Dimensions
Continual Learning for Multivariate Time Series Tasks with Variable Input DimensionsIndustrial Conference on Data Mining (IDM), 2021
Vibhor Gupta
Jyoti Narwariya
Pankaj Malhotra
Lovekesh Vig
Gautam M. Shroff
AI4TS
98
26
0
14 Mar 2022
Few-Shot Incremental Learning with Continually Evolved Classifiers
Few-Shot Incremental Learning with Continually Evolved ClassifiersComputer Vision and Pattern Recognition (CVPR), 2021
Chi Zhang
Nan Song
Guosheng Lin
Yun Zheng
Pan Pan
Yinghui Xu
CLL
286
372
0
07 Apr 2021
Partial transfusion: on the expressive influence of trainable batch norm
  parameters for transfer learning
Partial transfusion: on the expressive influence of trainable batch norm parameters for transfer learningInternational Conference on Medical Imaging with Deep Learning (MIDL), 2021
F. Kanavati
M. Tsuneki
MedIm
167
40
0
10 Feb 2021
Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning
Xiaoyu Tao
Xiaopeng Hong
Xinyuan Chang
Songlin Dong
Xing Wei
Yihong Gong
CLL
228
491
0
23 Apr 2020
Dark Experience for General Continual Learning: a Strong, Simple
  Baseline
Dark Experience for General Continual Learning: a Strong, Simple BaselineNeural Information Processing Systems (NeurIPS), 2020
Pietro Buzzega
Matteo Boschini
Angelo Porrello
Davide Abati
Simone Calderara
BDLCLL
355
1,113
0
15 Apr 2020
Defining Benchmarks for Continual Few-Shot Learning
Defining Benchmarks for Continual Few-Shot Learning
Antreas Antoniou
Massimiliano Patacchiola
Mateusz Ochal
Amos Storkey
181
41
0
15 Apr 2020
Arachne: Search Based Repair of Deep Neural Networks
Arachne: Search Based Repair of Deep Neural NetworksACM Transactions on Software Engineering and Methodology (TOSEM), 2019
Jeongju Sohn
Sungmin Kang
S. Yoo
KELM
198
60
0
28 Dec 2019
Domain-Specific Batch Normalization for Unsupervised Domain Adaptation
Domain-Specific Batch Normalization for Unsupervised Domain AdaptationComputer Vision and Pattern Recognition (CVPR), 2019
Woonggi Chang
Tackgeun You
Seonguk Seo
Suha Kwak
Bohyung Han
OOD
214
410
0
27 May 2019
Deep Learning for Large-Scale Traffic-Sign Detection and Recognition
Deep Learning for Large-Scale Traffic-Sign Detection and Recognition
Domen Tabernik
D. Skočaj
141
279
0
01 Apr 2019
Re-evaluating Continual Learning Scenarios: A Categorization and Case
  for Strong Baselines
Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines
Yen-Chang Hsu
Yen-Cheng Liu
Anita Ramasamy
Z. Kira
CLLELM
342
381
0
30 Oct 2018
Generative replay with feedback connections as a general strategy for
  continual learning
Generative replay with feedback connections as a general strategy for continual learning
Gido M. van de Ven
A. Tolias
CLLKELM
214
245
0
27 Sep 2018
Overcoming catastrophic forgetting with hard attention to the task
Overcoming catastrophic forgetting with hard attention to the task
Joan Serrà
Dídac Surís
M. Miron
Alexandros Karatzoglou
CLL
578
1,201
0
04 Jan 2018
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
899
3,092
0
26 Jun 2017
Remote Sensing Image Scene Classification: Benchmark and State of the
  Art
Remote Sensing Image Scene Classification: Benchmark and State of the Art
Gong Cheng
Junwei Han
Xiaoqiang Lu
457
2,550
0
01 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
1.0K
8,717
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
598
4,305
0
23 Nov 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Katharina Eggensperger
ODL
924
9,469
0
13 Aug 2016
Revisiting Batch Normalization For Practical Domain Adaptation
Revisiting Batch Normalization For Practical Domain Adaptation
Yanghao Li
Naiyan Wang
Jianping Shi
Jiaying Liu
Xiaodi Hou
OOD
300
643
0
15 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
3.6K
215,422
0
10 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
1.4K
45,561
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic OptimizationInternational Conference on Learning Representations (ICLR), 2014
Diederik P. Kingma
Jimmy Ba
ODL
4.6K
160,730
0
22 Dec 2014
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
  Neural Networks
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural NetworksInternational Conference on Learning Representations (ICLR), 2013
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
433
1,569
0
21 Dec 2013
1