ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16732
  4. Cited By
Enabling Uncertainty Estimation in Iterative Neural Networks

Enabling Uncertainty Estimation in Iterative Neural Networks

25 March 2024
N. Durasov
Doruk Öner
Jonathan Donier
Hieu M. Le
Pascal Fua
    UQCV
ArXivPDFHTML

Papers citing "Enabling Uncertainty Estimation in Iterative Neural Networks"

7 / 7 papers shown
Title
Assessing Sample Quality via the Latent Space of Generative Models
Assessing Sample Quality via the Latent Space of Generative Models
Jingyi Xu
Hieu M. Le
Dimitris Samaras
MedIm
30
2
0
21 Jul 2024
Adjusting the Ground Truth Annotations for Connectivity-Based Learning
  to Delineate
Adjusting the Ground Truth Annotations for Connectivity-Based Learning to Delineate
Doruk Öner
Leonardo Citraro
Mateusz Koziñski
Pascal Fua
3DH
3DPC
19
2
0
06 Dec 2021
Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows
Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows
Kunal Gupta
Manmohan Chandraker
AI4CE
45
78
0
21 Jul 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
435
15,631
0
02 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
249
9,134
0
06 Jun 2015
1