ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.20047
  4. Cited By
Embracing Unknown Step by Step: Towards Reliable Sparse Training in Real
  World

Embracing Unknown Step by Step: Towards Reliable Sparse Training in Real World

29 March 2024
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Bani Mallick
    UQCV
ArXivPDFHTML

Papers citing "Embracing Unknown Step by Step: Towards Reliable Sparse Training in Real World"

14 / 14 papers shown
Title
Average of Pruning: Improving Performance and Stability of
  Out-of-Distribution Detection
Average of Pruning: Improving Performance and Stability of Out-of-Distribution Detection
Zhen Cheng
Fei Zhu
Xu-Yao Zhang
Cheng-Lin Liu
MoMe
OODD
27
11
0
02 Mar 2023
Diffusion Models in Vision: A Survey
Diffusion Models in Vision: A Survey
Florinel-Alin Croitoru
Vlad Hondru
Radu Tudor Ionescu
M. Shah
DiffM
VLM
MedIm
186
1,098
0
10 Sep 2022
On the Robustness and Anomaly Detection of Sparse Neural Networks
On the Robustness and Anomaly Detection of Sparse Neural Networks
Morgane Ayle
Bertrand Charpentier
John Rachwan
Daniel Zügner
Simon Geisler
Stephan Günnemann
AAML
35
3
0
09 Jul 2022
Superposing Many Tickets into One: A Performance Booster for Sparse
  Neural Network Training
Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network Training
Lu Yin
Vlado Menkovski
Meng Fang
Tianjin Huang
Yulong Pei
Mykola Pechenizkiy
D. Mocanu
Shiwei Liu
19
8
0
30 May 2022
Mitigating Neural Network Overconfidence with Logit Normalization
Mitigating Neural Network Overconfidence with Logit Normalization
Hongxin Wei
Renchunzi Xie
Hao-Ran Cheng
Lei Feng
Bo An
Yixuan Li
OODD
160
258
0
19 May 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
74
46
0
20 Feb 2022
VOS: Learning What You Don't Know by Virtual Outlier Synthesis
VOS: Learning What You Don't Know by Virtual Outlier Synthesis
Xuefeng Du
Zhaoning Wang
Mu Cai
Yixuan Li
OODD
174
220
0
02 Feb 2022
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
165
812
0
21 Oct 2021
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
155
401
0
12 Oct 2021
Powerpropagation: A sparsity inducing weight reparameterisation
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
84
54
0
01 Oct 2021
Improving Uncertainty of Deep Learning-based Object Classification on
  Radar Spectra using Label Smoothing
Improving Uncertainty of Deep Learning-based Object Classification on Radar Spectra using Label Smoothing
Kanil Patel
William H. Beluch
K. Rambach
Michael Pfeiffer
B. Yang
UQCV
22
9
0
27 Sep 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
1