ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00979
  4. Cited By
PDF: A Probability-Driven Framework for Open World 3D Point Cloud
  Semantic Segmentation

PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

1 April 2024
Jinfeng Xu
Siyuan Yang
Xianzhi Li
Yuan Tang
Yixue Hao
Long Hu
Min Chen
    3DPC
    3DV
ArXivPDFHTML

Papers citing "PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation"

4 / 4 papers shown
Title
Open-world Semantic Segmentation for LIDAR Point Clouds
Open-world Semantic Segmentation for LIDAR Point Clouds
Jun Cen
Peng Yun
Shiwei Zhang
Junhao Cai
Di Luan
M. Y. Wang
Meilin Liu
Mingqian Tang
3DPC
39
28
0
04 Jul 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1