ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.08939
  4. Cited By
NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic
  IoT

NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT

13 April 2024
Xinzhe Zheng
Sijie Ji
Yipeng Pan
Kaiwen Zhang
Chenshu Wu
ArXivPDFHTML

Papers citing "NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT"

2 / 2 papers shown
Title
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by
  Tightly-Coupled Iterated Kalman Filter
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
W. Xu
Fu Zhang
66
597
0
16 Oct 2020
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
201
14,304
0
07 Oct 2016
1