Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.11156
Cited By
Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform
17 April 2024
Chunghyun Park
Seungwook Kim
Jaesik Park
Minsu Cho
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform"
9 / 9 papers shown
Title
Learning 3D Scene Analogies with Neural Contextual Scene Maps
Junho Kim
Gwangtak Bae
E. Lee
Young Min Kim
3DPC
3DV
60
0
0
20 Mar 2025
Efficient Semantic Matching with Hypercolumn Correlation
Seungwook Kim
Juhong Min
Minsu Cho
18
3
0
07 Nov 2023
TransforMatcher: Match-to-Match Attention for Semantic Correspondence
Seungwook Kim
Juhong Min
Minsu Cho
ViT
35
23
0
23 May 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction
Itai Lang
Dvir Ginzburg
S. Avidan
D. Raviv
3DPC
27
32
0
16 Oct 2021
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
102
314
0
25 Apr 2021
Learning Implicit Functions for Topology-Varying Dense 3D Shape Correspondence
Feng Liu
Xiaoming Liu
3DPC
33
36
0
23 Oct 2020
A Rotation-Invariant Framework for Deep Point Cloud Analysis
Xianzhi Li
Ruihui Li
Guangyong Chen
Chi-Wing Fu
Daniel Cohen-Or
Pheng-Ann Heng
3DPC
107
108
0
16 Mar 2020
Feature Pyramid Networks for Object Detection
Tsung-Yi Lin
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
166
21,643
0
09 Dec 2016
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
13,886
0
02 Dec 2016
1