Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.14642
Cited By
Uncertainty Quantification on Graph Learning: A Survey
23 April 2024
Chao Chen
Chenghua Guo
Rui Xu
Xiangwen Liao
Xi Zhang
Sihong Xie
Hui Xiong
Philip S. Yu
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification on Graph Learning: A Survey"
9 / 9 papers shown
Title
Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution Shift
Hongrui Liu
Binbin Hu
Xiao Wang
Chuan Shi
Zhiqiang Zhang
Jun Zhou
90
52
0
27 Jan 2022
Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration
Xiao Wang
Hongrui Liu
Chuan Shi
Cheng Yang
UQCV
93
113
0
29 Sep 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
195
80
0
16 Feb 2021
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
180
140
0
14 Dec 2020
Uncertainty Aware Semi-Supervised Learning on Graph Data
Xujiang Zhao
Feng Chen
Shu Hu
Jin-Hee Cho
UQCV
EDL
BDL
102
130
0
24 Oct 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
134
123
0
17 Oct 2020
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
29
41
0
16 Oct 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
Cross-conformal predictors
V. Vovk
110
194
0
03 Aug 2012
1