ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01531
  4. Cited By
Improving Intervention Efficacy via Concept Realignment in Concept
  Bottleneck Models

Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models

2 May 2024
Nishad Singhi
Jae Myung Kim
Karsten Roth
Zeynep Akata
ArXivPDFHTML

Papers citing "Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models"

7 / 7 papers shown
Title
Stochastic Concept Bottleneck Models
Stochastic Concept Bottleneck Models
Moritz Vandenhirtz
Sonia Laguna
Ricards Marcinkevics
Julia E. Vogt
24
9
0
27 Jun 2024
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
M. Zarlenga
Pietro Barbiero
Gabriele Ciravegna
G. Marra
Francesco Giannini
...
F. Precioso
S. Melacci
Adrian Weller
Pietro Lio'
M. Jamnik
58
52
0
19 Sep 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
96
64
0
31 May 2022
Post-hoc Concept Bottleneck Models
Post-hoc Concept Bottleneck Models
Mert Yuksekgonul
Maggie Wang
James Y. Zou
130
182
0
31 May 2022
DiagViB-6: A Diagnostic Benchmark Suite for Vision Models in the
  Presence of Shortcut and Generalization Opportunities
DiagViB-6: A Diagnostic Benchmark Suite for Vision Models in the Presence of Shortcut and Generalization Opportunities
Elias Eulig
Piyapat Saranrittichai
Chaithanya Kumar Mummadi
K. Rambach
William H. Beluch
Xiahan Shi
Volker Fischer
133
11
0
12 Aug 2021
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
1