ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.09536
  4. Cited By
Wasserstein Gradient Boosting: A General Framework with Applications to
  Posterior Regression

Wasserstein Gradient Boosting: A General Framework with Applications to Posterior Regression

15 May 2024
Takuo Matsubara
ArXivPDFHTML

Papers citing "Wasserstein Gradient Boosting: A General Framework with Applications to Posterior Regression"

5 / 5 papers shown
Title
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
185
877
0
21 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
45
48
0
06 Oct 2021
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1